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Maxwell’s Equations and QED: Which Is Fact and Which Is Fiction? 

Randell L. Mills

Abstract 

The claim that quantum electrodynamics (QED) is the most successful theory in 
history is critically evaluated. The Dirac equation was postulated in 1926 as a 
means to remedy the nonrelativistic nature of the Schrödinger equation to provide 
the missing fourth quantum number. The positive and negative square root terms 
provided an argument for the existence of negative energy states of the vacuum, 
virtual particles, and corresponding so-called QED computer algorithms for cal-
culating unexpected observables such as the Lamb shift and the anomalous mag-
netic moment of the electron. Dirac’s original attempt to solve the bound electron 
physically with stability with respect to radiation according to Maxwell’s equa-
tions, with the further constraints that it be relativistically invariant and give rise 
to electron spin, is achievable using a classical approach. Starting with the same 
essential physics as Bohr, Schrödinger, and Dirac of e

–
 moving in the Coulombic

field of the proton and the wave equation as an equation of motion rather than 
energy after Schrödinger, advancements in the understanding of the stability of 
the bound electron to radiation are applied to solve for the exact nature of the 
electron. Rather than using the postulated Schrödinger boundary condition “Ψ → 
0 as r → ∞,” which leads to a purely mathematical model of the electron, the 
constraint is based on experimental observation. Using Maxwell’s equations, the 
classical wave equation is solved with the constraint that the bound (n = 1)-state 
electron cannot radiate energy. Although it is well known that an accelerated 
point particle radiates, an extended distribution modeled as a superposition of 
accelerating charges does not have to radiate. A simple invariant physical model 
arises naturally wherein the predicted results are extremely straightforward and 
internally consistent, requiring minimal mathematics, as in the case of the most fa-
mous equations of Newton, Maxwell, Lorentz, de Broglie, and Planck on which the 
model is based. No new physics is needed; only the known physical laws based on 
direct observation are used. Rather than invoking untestable “flights of fancy,” the 
results of QED, such as the anomalous magnetic moment of the electron, the Lamb 
shift, the fine structure and hyperfine structure of the hydrogen atom, and the hy-
perfine structure intervals of positronium and muonium, can be solved exactly from 
Maxwell’s equations to the limit possible based on experimental measurements, 
which confirms QED’s illegitimacy as representative of reality. 

Key words: QED, Maxwell’s equations, Lamb shift, fine structure and hyperfine 
structure of the hydrogen atom, hyperfine structure intervals of positronium and 
muonium 

1. INTRODUCTION

The hydrogen atom is the only real problem for which 
the Schrödinger equation can be solved without ap-
proximations; however, it only provides three quantum 
numbers — not four. Furthermore, the Schrödinger 
equation is not accurate at all. It is nonrelativistic, and 

there are major differences between predicted and 
experimental ionization energies as Z increases, and 
inescapable disagreements between observation and 
predictions arise from the later-postulated Dirac equa-
tion as well as the Schrödinger equation.

(1–10)
 In addition

to spin, it misses the Lamb shift, the fine structure, 
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and the hyperfine structure completely; it is not stable 
to radiation; and it has many other problems with 
predictions that do not match experimentation.

(2–10)
 It

also has an infinite number of solutions, not just the 
ones given in textbooks, as given in Margenau and 
Murphy

(11)
 and Ref. 9.

Unlike physical laws such as Maxwell’s equations, 
it is always disconcerting to those that study quantum 
mechanics (QM) that both QM and quantum electro-
dynamics (QED) must be accepted without any 
underlying physical basis for fundamental observ-
ables such as the stability of the hydrogen atom in the 
first place. In this instance a circular argument 
regarding definitions for parameters in the wave 
equation solutions and the Rydberg series of spectral 
lines replaces a first principles–based prediction of 
those lines.

(2–10)

Nevertheless, it is felt that applying the Schrödinger 
equation to real problems has provided useful approxi-
mations for physicists and chemists. Schrödinger 
interpreted eΨ*(x)Ψ(x) as the charge-density or the 
amount of charge between x and x + dx (Ψ* is the 
complex conjugate of Ψ). Presumably, then, he pictured 
the electron to be spread over large regions of space. 
After Schrödinger’s interpretation, Max Born, who was 
working with scattering theory, found that this interpre-
tation led to inconsistencies, and he replaced the 
Schrödinger interpretation with the probability of 
finding the electron between x and x + dx as 

( ) *( ) .x x dxΨ Ψ∫ (1) 

Born’s interpretation is generally accepted. Nonethe-
less, interpretation of the wave-function is a never-
ending source of confusion and conflict. Many 
scientists have solved this problem by conveniently 
adopting the Schrödinger interpretation for some 
problems and the Born interpretation for others. This 
duality allows the electron to be everywhere at one 
time — yet have no volume. Alternatively, the 
electron can be viewed as a discrete particle that 
moves here and there (from r = 0 to r = ∞), and ΨΨ* 
gives the time average of this motion. 

Despite its successes, QM has remained mysterious 
to all who have encountered it. Starting with Bohr and 
progressing into the present, the departure from 
intuitive, physical reality has widened. The connec-
tion between QM and reality is more than just a 
“philosophical” issue. It reveals that QM is not a 
correct or complete theory of the physical world and 
that inescapable internal inconsistencies and incon-
gruities arise when attempts are made to treat it as a 

physical as opposed to a purely mathematical “tool.” 
Some of these issues are discussed in a review by 
Laloë.

(1)

But QM has severe limitations even as a tool. Be-
yond one-electron atoms, multielectron-atom quan-
tum-mechanical equations cannot be solved except by 
approximation methods

(12)
 involving adjustable-

parameter theories (perturbation theory, variational 
methods, self-consistent field method, multiconfigu-
ration Hartree–Fock method, multiconfiguration 
parametric potential method, 1/Z expansion method, 
multiconfiguration Dirac–Fock method, electron 
correlation terms, QED terms, etc.) — all of which 
contain assumptions that cannot be physically tested 
and are not consistent with physical laws. And calling 
the substitutes approximations is misleading. They are 
not approximations since they involve new physics or 
constructs or are simply curve-fitting algorithms, as 
discussed previously.

(6)
 With adjustable-parameter

methods, it is necessary to repeat trial-and-error 
experimentation to find which method of calculation 
gives the right answer. It is common practice to 
present only the successful procedure as if it followed 
from first principles and not mention the actual 
method by which it was found. In many cases the 
success of QM can be attributed to the use of arbitrary 
variational parameters in all-space probability wave-
functions and arbitrary renormalization of intrinsic 
infinities in the corresponding energies. Furthermore, 
the distinction between series expansion or variation 
of a physical parameter of an equation based on a 
physical action and the fabrication of actions based on 
untestable constructs corresponding to a series with 
variational (adjustable) parameters is discussed in 
Section 2. 

Also, after decades of futility, QM and the intrinsic 
Heisenberg uncertainty principle have not yielded a 
unified theory, are still purely mathematical, and have 
yet to be shown to be based in reality.

(2,7,9)
 Both are

based on circular arguments that the electron is a 
point with no volume with a vague probability wave 
requiring that the electron have infinite numbers of 
positions and energies, including negative and infinite 
energies simultaneously. It may be time to revisit the 
75-year-old notion that fundamental particles such as 
the electron are one- or zero-dimensional and obey 
different physical laws than objects comprising 
fundamental particles and the even more disturbing 
view that fundamental particles don’t obey physical 
laws — rather they obey mathematics devoid of 
physical laws. Perhaps mathematics does not deter-
mine physics. It only models physics. 
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The Schrödinger equation was originally postulated 
in 1926 as having a solution of the one-electron atom. 
It gives the principal energy levels of the hydrogen 
atom as eigenvalues of eigenfunction solutions of the 
Laguerre differential equation. But, as the principal 
quantum number n >> 1, the eigenfunctions become 
nonsensical since they are sinusoidal over all space; 
thus they are nonintegrable, cannot be normalized, 
and are infinite.

(13)
 Despite its wide acceptance, on

deeper inspection, the Schrödinger equation solution 
is plagued with many failings, as well as difficulties 
in terms of a physical interpretation, that have caused 
it to remain controversial since its inception. Only the 
one-electron atom may be solved without approxima-
tions, the results are very poor, and it fails to predict 
electron spin and leads to models with nonsensical 
consequences such as negative energy states of the 
vacuum, infinities, and negative kinetic energy. In 
addition to many predictions that simply do not agree 
with observations, the Schrödinger equation and 
succeeding extensions predict noncausality, nonlocal-
ity, spooky actions at a distance or quantum telepathy, 
perpetual motion, and many internal inconsistencies 
where contradicting statements have to be taken true 
simultaneously.

(2,7,9)

It was reported previously
(9)

 that the behavior of
free electrons in superfluid helium has again forced 
the issue of the meaning of the wave-function. 
Electrons form bubbles in superfluid helium that 
reveal that the electron is real and that a physical 
interpretation of the wave-function is necessary. 
Furthermore, when irradiated with light of energy of 
about 0.5 to several electron volts,

(9,14)
 the electrons

carry current at different rates as if they exist with 
different sizes. The nature of the wave-function needs 
to be addressed. It is time for the physical rather than 
the mathematical nature of the wave-function to be 
determined. A classical derivation based on an 
extended electron was shown previously to be in 
complete agreement with observations, whereas QM 
has no utility.

(7,9)

From the time of its inception, QM has been con-
troversial because its foundations are in conflict with 
physical laws and are internally inconsistent. Interpre-
tations of QM such as hidden variables, multiple 
worlds, consistency rules, and spontaneous collapse 
have been put forward in an attempt to base the 
theory in reality. Unfortunately, many theoreticians 
ignore the requirement that the wave-function be real 
and physical in order for it to be considered a valid 
description of reality. For example, regarding this 
issue, Fuchs and Peres believe,

(15)
 “Contrary to those

desires, quantum theory does not describe physical 
reality. What it does is provide an algorithm for 
computing probabilities for macroscopic events 
(‘detector ticks’) that are the consequences of our 
experimental interventions. This strict definition of 
the scope of quantum theory is the only interpretation 
ever needed, whether by experimenters or theorists.” 

With Penning traps, it is possible to measure transi-
tions including those with hyperfine levels of elec-
trons of single ions. This case can be experimentally 
distinguished from statistics over equivalent transi-
tions in many ions. Whether many or one, the transi-
tion energies are always identical within the resonant 
line width. So probabilities have no place in describ-
ing atomic energy levels. Moreover, quantum theory 
is incompatible with probability theory since it is 
based on underlying unknown, but determined, 
outcomes, as discussed previously.

(9)

Wave-function solutions of the Schrödinger equa-
tion are interpreted as probability-density functions. 
Quantum theory confuses the concepts of a wave and 
a probability-density function, which are based on 
totally different mathematical and physical principles. 
The use of “probability” in this instance does not 
conform to the mathematical rules and principles of 
probability theory. Statistical theory is based on an 
existing deterministic reality with incomplete infor-
mation, whereas quantum measurement acts on a 
“probability-density function” to determine a reality 
that did not exist before the measurement. Addition-
ally, it is nonsensical to treat a single particle such as 
an electron as if it were a population of electrons and 
to assign the single electron to a statistical distribution 
over many states. The electron has conjugate degrees 
of freedom such as position, momentum, and energy 
that obey conservation laws in an inverse-r Coulomb 
field. A single electron cannot have multiple positions 
and momenta or energies simultaneously. 

The Copenhagen interpretation provides another 
meaning of QM. It asserts that what we observe is all 
we can know; any speculation about what an electron, 
photon, atom, or other atomic-sized entity is really or 
what it is doing when we are not looking is just that 
— speculation. The postulate of quantum measure-
ment asserts that the process of measuring an observ-
able forces it into a state of reality. In other words, 
reality is irrelevant until a measurement is made. In 
the case of electrons in superfluid helium, the fallacy 
with this position is that the “ticks” (migration times 
of electron bubbles) reveal that the electron is real 
before a measurement is made. Furthermore, experi-
ments on transitions on single ions such as Ba

+
 in a
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Penning trap under continuous observation demon-
strate that the postulate of quantum measurement of 
QM is experimentally disproved, as discussed previ-
ously.

(9,16)
 These issues and other such flawed phi-

losophies and interpretations of experiments that arise 
from QM were discussed previously.

(1–10)
 

QM gives correlations with experimental data. It 
does not explain the mechanism for the observed data. 
But it should not be surprising that it may give good 
correlations given that the constraints of internal 
consistency and conformance to physical laws are 
removed for a wave equation with an infinite number 
of solutions wherein the solutions may be formulated 
as an infinite series of eigenfunctions with variable 
parameters. There are no physical constraints on the 
parameters. They may even correspond to unobserv-
ables such as virtual particles, hyperdimensions, 
effective nuclear charge, polarization of the vacuum, 
worm holes, spooky action at a distance, infinities, 
parallel universes, faster than light travel, etc. If you 
invoke the constraints of internal consistency and 
conformance to physical laws, QM has never success-
fully solved a physical problem, as discussed previ-
ously.

(6)
 

Reanalysis of old experiments and many new ex-
periments, including electrons in superfluid helium, 
challenge the Schrödinger equation predictions. Many 
noted physicists rejected QM. Feynman also at-
tempted to use first principles, including Maxwell’s 
equations, to discover new physics to replace QM.

(17)
 

Other great physicists of the 20th century searched. 
“Einstein […] insisted […] that a more detailed, 
wholly deterministic theory must underlie the vaga-
ries of quantum mechanics.”

(18)
 He felt that scientists 

were misinterpreting the data. These issues and the 
results of many experiments, such as the wave-
particle duality, the Lamb shift, anomalous magnetic 
moment of the electron, and transition and decay 
lifetimes; experiments invoking interpretations of 
spooky action at a distance such as the Aspect ex-
periment; entanglement; and double slit–type experi-
ments, are shown to be absolutely predictable and 
physical in the context of a theory of classical quan-
tum mechanics (CQM) derived from first princi-
ples.

(2–10)
 

2. QED 

QM failed to predict the results of the Stern–
Gerlach experiment, which indicated the need for an 
additional quantum number. In QM the spin angular 
momentum of the electron is called the “intrinsic 
angular momentum” since no physical interpretation 

exists. (Currents corresponding to the observed 
magnetic field of the electron cannot exist in one 
dimension of four-dimensional space-time, where 
Ampère’s law and the intrinsic special relativity 
determine the corresponding unique current.) The 
Schrödinger equation is not Lorentzian invariant, in 
violation of special relativity. The Schrödinger 
equation also misses the Lamb shift, the fine struc-
ture, and the hyperfine structure completely, and it is 
not stable to radiation. QED was proposed by Dirac in 
1926 to provide a generalization of QM for high 
energies in conformity with the theory of special 
relativity and to provide a consistent treatment of the 
interaction of matter with radiation. But it does not 
bridge the gap between QM and special relativity. 
From Weisskopf,

(19)
 “Dirac’s quantum electrodynam-

ics gave a more consistent derivation of the results of 
the correspondence principle, but it also brought 
about a number of new and serious difficulties.” QED 
(1) does not explain nonradiation of bound electrons, 
(2) contains an internal inconsistency with special 
relativity regarding the classical electron radius — the 
electron mass corresponding to its electric energy is 
infinite, (3) admits solutions of negative rest mass and 
negative kinetic energy, (4) leads to infinite kinetic 
energy and infinite electron mass for the interaction 
of the electron with the predicted zero-point field 
fluctuations, and (5) still yielded infinities when Dirac 
used the unacceptable states of negative mass for the 
description of the vacuum. Dirac’s postulated relativ-
istic wave equation gives the inescapable result of a 
cosmological constant that is at least 120 orders of 
magnitude larger than the best observational limit, 
due to the unacceptable states of negative mass for the 
description of the vacuum, as discussed previ-
ously.

1,(2–7,9,10)
 The negative mass states further create 

an absolute “ether”-like frame, in violation of special 
relativity, which was disproved by the Michelson–
Morley experiment. 

In retrospect, Dirac’s equation, which was postu-
lated to explain spin, relies on the unfounded notions 
of negative energy states of the vacuum, virtual 
particles, and gamma factors; thus it cannot be the 
correct description of a bound electron even though 
it gives an additional quantum number interpreted as 
corresponding to the phenomenon of electron spin. 
Ironically, it is not even internally consistent with 
respect to its intent of being in accord with special 
relativity. The Dirac equation violates Maxwell’s 
equations with respect to stability to radiation; 
contains an internal inconsistency with special 
relativity regarding the classical electron radius and 
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states of negative rest mass and negative kinetic 
energy, as given by Weisskopf;

(19)
 and further 

violates Einstein causality and locality in addition to 
conservation of energy, as shown by the Klein 
paradox discussed previously.

2,(2,4,7)
 Furthermore, 

everyday observation demonstrates that causality 
and locality always hold. Einstein also argued that a 
probabilistic versus deterministic nature of atomic 
particles leads to disagreement with special relativ-
ity. In fact, the nonlocality result of the Copenhagen 
interpretation violates causality, as shown by Ein-
stein, Podolsky, and Rosen (EPR) in a classic 
paper

(22)
 that presented a paradox involving instanta-

neous (faster-than-light) communication between 
particles called “spooky action at a distance,” which 
led them to conclude that QM is not a complete or 
correct theory. The implications of the EPR paper 
and the exact Maxwellian predictions of “spooky 
action” and “entanglement” experiments, incorrectly 
interpreted in the context of QM, are given in 
Chapter 42 of Ref. 7. 

In 1947, contrary to Dirac’s predictions, Lamb 
discovered a 1000 MHz shift between the 

2
S1/2 state 

and the 
2
P1/2 state of the hydrogen atom.

(24)
 This so-

called Lamb shift marked the beginning of modern 
QED. In the words of Dirac,

(25)
 “No progress was 

made for 20 years. Then a development came initiated 
by Lamb’s discovery and explanation of the Lamb 
Shift, which fundamentally changed the character of 
theoretical physics. It involved setting up rules for 
discarding … infinities….” Renormalization is 
currently believed to be required of any fundamental 
theory of physics.

(26)
 However, dissatisfaction with 

renormalization has been expressed at various times 
by many physicists, including Dirac,

(27)
 who felt that, 

“This is just not sensible mathematics. Sensible 
mathematics involves neglecting a quantity when it 
turns out to be small — not neglecting it just because 
it is infinitely great and you do not want it!” 

Although the Dirac equation did not predict the 
Lamb shift or the electron g factor,

(24,28,29)
 its feature 

of negative-mass states of the vacuum gave rise to the 
postulates of QED that have become a centerpiece of 
QM to explain these and other similar observations. 
One of QED’s seminal aspects of renormalization, 
which was subsequently grafted onto atomic theory, 
was a turning point in physics similar to the decision 
to treat the electron as a point particle/probability 
wave, a point with no volume with a vague probabil-
ity wave requiring that the electron have an infinite 
number of positions and energies, including negative 
and infinite energies simultaneously. The adoption of 

the probabilistic versus deterministic nature of atomic 
particles violates all physical laws, including special 
relativity with violation of causality, as pointed out by 
Einstein

(22)
 and de Broglie.

(30)
 Consequently, it was 

rejected even by Schrödinger.
(31)

 
Pure mathematics took the place of physics when 

calculating subtle shifts of the hydrogen atomic 
energy levels. Moreover, in QED, the pure mathemat-
ics approach has been confused with physics to the 
point that virtual particles are really considered as 
causing the observable. The justification for the 
linkage is often incorrectly associated with the usage 
of series expansion and variational methods to solve 
problems based on physical laws. But series expan-
sion of an equation based on a physical action or 
variation of a physical parameter of the equation 
versus the fabrication of an action based on fantastical 
untestable constructs that are represented by a series 
are clearly different. For example, the motion of a 
pendulum can be solved exactly in terms of an elliptic 
integral using Newtonian mechanics. Expanding the 
elliptic integral in a power series and ignoring negli-
gible terms in the series and setting up arbitrary rules 
for discarding infinities are clearly not the same. 
Furthermore, inventing virtual particles that have an 
action on space, and subsequently on an electron, and 
expanding terms in the energy equation due to a 
gravitating body causing a gravitational field and thus 
an action on the pendulum are very different. In QED, 
virtual particles are not merely a substitutional or 
expansion variable. They are really considered as 
causing the observable. 

In a further exercise of poor science, virtual parti-
cle–based calculations are even included in the 
determination of the fundamental constants, which are 
circularly used to calculate the parameter ascribed to 
the virtual particles. For example, using the electron 
magnetic moment anomaly in the selection of the best 
value of the fine-structure constant, the CODATA 
publication

(32)
 reports the use of virtual particles: 

The term A1 is mass independent and the other 
terms are functions of the indicated mass ratios. 
For these terms the lepton in the numerator of the 
mass ratio is the particle under consideration, 
while the lepton in the denominator of the ratio is 
the virtual particle that is the source of vacuum 
polarization that gives rise to the term. 

There is no direct evidence that virtual particles exist 
or that they polarize the vacuum. Even their postula-
tion is an oxymoron. 
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Throughout the history of quantum theory, wher-
ever there was an advance to a new application, it was 
necessary to repeat a trial-and-error experimentation 
to find which method of calculation gave the right 
answers. Often the textbooks present only the suc-
cessful procedure as if it followed from first princi-
ples and do not mention the actual method by which it 
was found. In electromagnetic theory based on 
Maxwell’s equations one deduces the computational 
algorithm from the general principles. In quantum 
theory the logic is just the opposite. One chooses the 
principle (e.g., phenomenological Hamiltonians) to fit 
the empirically successful algorithm. For example, we 
know that it required a great deal of art and tact over 
decades of effort to get correct predictions out of 
QED. The QED method of determining (g – 2)/2 from 
the postulated Dirac equation is based on a postulated 
power series of α/π, where each postulated virtual 
particle is a source of postulated vacuum polarization 
that gives rise to a postulated term, which is proc-
essed over decades using ad hoc rules to remove 
infinities from each term that arises from postulated 
scores of postulated Feynman diagrams. The solution 
so obtained using the perturbation series further 
requires a postulated truncation since the series 
diverges. Mohr and Taylor reference some of the 
Herculean efforts to arrive at g using QED:

(32)
 

the sixth-order coefficient A1
(6)

 arises from 72 
diagrams and is also known analytically after 
nearly 30 years of effort by many researchers 
(see Roskies, Remiddi, and Levine (1990) for a 
review of the early work). It was not until 1996 
that the last remaining distinct diagrams were 
calculated analytically, thereby completing the 
theoretical expression for A1

(6)
. 

For the right experimental numbers to emerge one 
must do the calculation (i.e., subtract off the infini-
ties) in one particular way and not in some other way 
that appears in principle equally valid. For example, 
Milonni

(33)
 presents a QED derivation of the magnetic 

moment of the electron that gives a result of the 
wrong sign and requires the introduction of an 

upper limit K in the integration over k = ω/c in 
order to avoid a divergence. 

A differential mass is arbitrarily added, and then 

the choice K = 0.42mc/� yields (g – 2)/2 = α/2π 
which is the relativistic QED result to first order 

in α. […] However, the reader is warned not to 
take these calculations too seriously, for the re-
sult (g – 2)/2 = α/2π could be obtained by retain-
ing only the first (radiation reaction) term in 
(3.112) and choosing K = 3mc/8�. It should also 
be noted that the solution K ≅ 0.42mc/� of (3.112) 
with (g – 2)/2 = α/2π is not unique. 

Such an ad hoc nonphysical approach makes incredi-
ble 

the cliché that QED is the best theory we have!
(34)

 

or the statement that 

The history of quantum electrodynamics (QED) 
has been one of unblemished triumph.

(35)
 

There is a corollary, noted by Kallen: from an incon-
sistent theory, any result may be derived. 

In an attempt to provide some physical insight into 
atomic problems and starting with the same essential 
physics as Bohr of e

–
 moving in the Coulombic field 

of the proton and the wave equation as modified after 
Schrödinger, a classical approach was explored that 
yields a remarkably accurate model and provides 
insight into physics on the atomic level.

(2–7)
 Physical 

laws and intuition are restored when dealing with the 
wave equation and quantum-mechanical problems. 
Specifically, a theory of CQM was derived from first 
principles that successfully applies physical laws on 
all scales. Rather than using the postulated 
Schrödinger boundary condition “Ψ → 0 as r → ∞,” 
which leads to a purely mathematical model of the 
electron, the constraint is based on experimental 
observation. Using Maxwell’s equations, the classical 
wave equation as an equation of motion is solved with 
the constraint that the bound (n = 1)-state electron 
cannot radiate energy. The electron must be ex-
tended, rather than a point. On this basis, with the 
assumption that physical laws including Maxwell’s 
equation apply to bound electrons, the hydrogen atom 
was solved exactly from first principles. The remark-
able agreement across the spectrum of experimental 
results indicates that this is the correct model of the 
hydrogen atom. 

It was shown previously that QM does not explain 
the stability of the atom to radiation,

(2)
 whereas the 

Maxwellian approach gives a natural relationship 
between Maxwell’s equations, special relativity, and 
general relativity. CQM holds over a scale of space-
time of 85 orders of magnitude — it correctly predicts 
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the nature of the universe from the scale of the quarks 
to that of the cosmos.

(3)
 A review is given by Land-

vogt.
(36)

 In a third paper the atomic physical approach 
was applied to multielectron atoms that were solved 
exactly, disproving the deep-seated view that such 
exact solutions cannot exist according to QM. The 
general solutions for one- through twenty-electron 
atoms are given in Ref. 4. The predictions are in 
remarkable agreement with the experimental values 
known for 400 atoms and ions. A fourth paper 
presents a solution based on physical laws and fully 
compliant with Maxwell’s equations that solves the 
26 parameters of molecular ions and molecules of 
hydrogen isotopes in closed-form equations with 
fundamental constants only that match the experimen-
tal values.

(5)
 In a fifth paper the nature of atomic 

physics being correctly represented by QM versus 
CQM is subjected to a test of internal consistency for 
the ability to calculate the conjugate observables 
using the same solution for each of the separate 
experimental measurements.

(6)
 It is confirmed that the 

CQM solution is the accurate model of the helium 
atom by the agreement of predicted and observed 
conjugate parameters of the free electron, ionization 
energy of helium and all two-electron atoms, ioniza-
tion energies of multielectron atoms, electron scatter-
ing of helium for all angles, and all He I excited 
states, using the same unique physical model in all 
cases. Over 500 conjugate parameters are calculated 
using a unique solution of the two-electron atom 
without any adjustable parameters. In the closed-form 
equations overall agreement is achieved to the level 
obtainable considering the error in the measurements 
and in the fundamental constants. 

In contrast, the quantum theory fails utterly. Ad hoc 
computer algorithms are used to generate meaningless 
numbers with internally inconsistent and nonphysical 
models that have no relationship to physics. Attempts 
are often made to numerically reproduce prior theo-
retical numbers using adjustable parameters, includ-
ing arbitrary wave-functions in computer programs 
with precision that is often much greater (e.g., eight 
significant figures greater) than possible based on the 
propagation of errors in the measured fundamental 
constants implicit in the physical problem. 

In this sixth paper of a series, rather than invoking 
renormalization, untestable virtual particles, and 
polarization of the vacuum by the virtual particles, the 
results of QED such as the anomalous magnetic 
moment of the electron, the Lamb shift, the fine 
structure and hyperfine structure of the hydrogen 
atom, and the hyperfine structure intervals of posi-

tronium and muonium (thought to be only solvable 
using QED) are solved exactly from Maxwell’s 
equations to the limit possible based on experimental 
measurements. 

3. CLASSICAL QUANTUM THEORY OF THE 
ATOM BASED ON MAXWELL’S EQUA-
TIONS 

In this paper the old view that the electron is a zero-
or one-dimensional point in an all-space probability 
wave-function Ψ(x) is not taken for granted. The 
theory of CQM, derived from first principles, must 
successfully and consistently apply physical laws on 
all scales.

(2–10)
 Stability to radiation was ignored by all 

past atomic models. Historically, the point at which 
QM broke with classical laws can be traced to the 
issue of nonradiation of the one-electron atom. Bohr 
just postulated orbits stable to radiation with the 
further postulate that the bound electron of the 
hydrogen atom does not obey Maxwell’s equations — 
rather it obeys different physics.

(2,7)
 Later physics was 

replaced by “pure mathematics” based on the notion 
of the inexplicable wave-particle duality nature of 
electrons, which led to the Schrödinger equation, 
wherein the consequences of radiation predicted by 
Maxwell’s equations were ignored. Ironically, Bohr, 
Schrödinger, and Dirac used the Coulomb potential, 
and Dirac used the vector potential of Maxwell’s 
equations. But all ignored electrodynamics and the 
corresponding radiative consequences. Dirac origi-
nally attempted to solve the bound electron physically 
with stability with respect to radiation according to 
Maxwell’s equations with the further constraints that 
it be relativistically invariant and give rise to electron 
spin.

(37)
 He and many founders of QM, such as 

Sommerfeld, Bohm, and Weinstein, wrongly pursued 
a planetary model, were unsuccessful, and resorted to 
the current mathematical probability-wave model that 
has many problems.

(1–10,19,22,23,37)
 Consequently, 

Feynman, for example, attempted to use first princi-
ples, including Maxwell’s equations, to discover new 
physics to replace QM.

(38)
 

Physical laws may indeed be the root of the obser-
vations thought to be “purely quantum mechanical,” 
and it may have been a mistake to assume that 
Maxwell’s electrodynamic equations must be rejected 
at the atomic level. Thus, in the present approach, the 
classical wave equation is solved with the constraint 
that a bound (n = 1)-state electron cannot radiate 
energy. 

Herein, derivations consider the electrodynamic 
effects of moving charges as well as the Coulomb 
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potential, and the search is for a solution representa-
tive of the electron wherein there is acceleration of 
charge motion without radiation. The mathematical 
formulation for zero radiation based on Maxwell’s 
equations follows from a derivation by Haus.

(39)
 The 

function that describes the motion of the electron 
must not possess space-time Fourier components that 
are synchronous with waves traveling at the speed of 
light. Similarly, nonradiation is demonstrated based 
on the electron’s electromagnetic fields and the 
Poynting power vector. 

It was shown previously
(3–8)

 that CQM gives 
closed-form solutions for the atom, including the 
stability of the n = 1 state and the instability of the 
excited states, the equation of the photon and electron 
in excited states, and the equation of the free electron 
and photon, which predict the wave-particle duality 
behavior of particles and light. The current- and 
charge-density functions of the electron may be 
directly physically interpreted. For example, spin 
angular momentum results from the motion of nega-
tively charged mass moving systematically, and the 
equation for angular momentum, r × p, can be 
applied directly to the wave-function (a current-
density function) that describes the electron. The 
magnetic moment of a Bohr magneton, Stern–Gerlach 
experiment, g factor, Lamb shift, resonant line width 
and shape, selection rules, correspondence principle, 
wave-particle duality, excited states, state lifetimes, 
reduced mass, rotational energies, momenta, orbital 
and spin splitting, spin-orbit coupling, Knight shift, 
spin-nuclear coupling, and elastic electron scattering 
from helium atoms are derived in closed-form equa-
tions based on Maxwell’s equations. The calculations 
agree with experimental observations. 

In contrast to the failure of the Bohr theory and the 
nonphysical, adjustable-parameter approach of QM, 
multielectron atoms

(4,7)
 and the nature of the chemical 

bond
(5,7)

 are given by exact closed-form solutions 
containing fundamental constants only. Using the 
nonradiative wave equation solutions that describe 
each bound electron having conserved momentum 
and energy, the radii are determined from the force 
balance of the electric, magnetic, and centrifugal 
forces that correspond to the minimum of energy of 
the atomic or ionic system. The ionization energies 
are then given by the electric and magnetic energies at 
these radii. The spreadsheets to calculate the energies 
from exact solutions of one- through twenty-electron 
atoms are available from the Internet.

(40)
 For 400 

atoms and ions the agreement between the predicted 
and experimental results is remarkable. 

3.1 One-Electron Atoms 

One-electron atoms include the hydrogen atom, 
He

+
, Li

2+
, Be

3+
, and so on. The mass-energy and 

angular momentum of the electron are constant; this 
requires that the equation of motion of the electron be 
temporally and spatially harmonic. Thus the classical 
wave equation applies and 
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1
( , , , ) 0,r t

v t

∂
ρ θ φ

∂

 
∇ − =  

 (2) 

where ρ(r, θ, φ, t) is the time-dependent charge-
density function of the electron in time and space. In 
general, the wave equation has an infinite number of 
solutions. To arrive at the solution that represents the 
electron, a suitable boundary condition must be 
imposed. It is well known from experiments that 
each single atomic electron of a given isotope 
radiates to the same stable state. Thus the physical 
boundary condition of nonradiation of the bound 
electron was imposed on the solution of the wave 
equation for the time-dependent charge-density 
function of the electron.

(2–8)
 The condition for 

radiation by a moving point charge given by Haus
(39)

 
is that its space-time Fourier transform possess 
components that are synchronous with waves travel-
ing at the speed of light. Conversely, it is proposed 
that the condition for nonradiation by an ensemble of 
moving charge that makes up a current-density 
function is as follows: 

For nonradiative states the current-density func-
tion must not possess space-time Fourier compo-
nents that are synchronous with waves traveling 
at the speed of light. 

The time, radial, and angular solutions of the wave 
equation are separable. The motion is time harmonic 
with frequency ωn. A constant angular function is a 
solution to the wave equation. Solutions of the 
Schrödinger wave equation comprising a radial 
function radiate according to Maxwell’s equation, as 
shown previously by application of Haus’s condi-
tion.

(39)
 In fact, it was found that any function that 

permitted radial motion gave rise to radiation. A 
radial function that does satisfy the boundary condi-
tion is a radial delta function 
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This function defines a constant charge density on a 
spherical shell, where rn = nr1, wherein n is an integer 
in an excited state, and (2) becomes the two-
dimensional wave equation plus time with separable 
time and angular functions. Given time-harmonic 
motion and a radial delta function, the relationship 
between an allowed radius and the electron wave-
length is given by 

 2 ,n nrπ λ=  (4) 

where the integer subscript n here and in (3) is 
determined during photon absorption as given in the 
Excited States of the One-Electron Atom (Quantiza-
tion) section of Ref. 7. Using the observed de Broglie 
relationship for the electron mass where the coordi-
nates are spherical, 

 ,
n

n e n

h h

p m v
λ = =  (5) 

and the magnitude of the velocity for every point on 
the electron surface is 

 .
n

e n

v
m r

=
�

 (6) 

The sum of the |Li|, the magnitude of the angular 
momentum of each infinitesimal density element of 
the element of mass mi, must be constant. The con-
stant is �: 

 | | .
i i e n

e n

m m r
m r

= × = =∑ ∑L r v
�

�  (7) 

Thus an electron is a two-dimensional spherical 
current surface (zero thickness), called an electron 
orbitsphere, shown in Fig. 1, that can exist in a bound 
state at only specified distances from the nucleus 
determined by an energy minimum. The correspond-
ing current, which gives rise to the phenomenon of 
spin, is derived in Section 3.2 using the current vector 
field shown in Fig. 2. (See the Orbitsphere Equation 
of Motion for � = 0 of Ref. 7 at Chapter 1.) 

Nonconstant functions are also solutions for the 
angular functions. To be a harmonic solution of the 
wave equation in spherical coordinates, these angular 
functions must be spherically harmonic functions.

(41)
 

A zero of the space-time Fourier transform of the product 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. The orbitsphere is a two-dimensional spherical shell of 

current having zero thickness with the Bohr radius of the 

hydrogen atom, r = aH. The current and charge densities 

confined to two dimensions at rn = nr1 are uniform. 

 
 
function of two spherically harmonic angular func-
tions, a time-harmonic function, and an unknown 
radial function is sought. The solution for the radial 
function that satisfies the boundary condition is also a 
delta function given by (3). Thus bound electrons are 
described by a charge-density (mass-density) function 
that is the product of a radial delta function, two 
angular functions (spherically harmonic functions), 
and a time-harmonic function: 

 2

1
( , , , ) ( ) ( , , ) ( ) ( , , ),

( , , ) ( , ) ( ).

nr t f r A t r r A t
r

A t Y k t

ρ θ φ θ φ δ θ φ

θ φ θ φ

= = −

=

(8) 

In these cases the spherically harmonic functions 
correspond to a traveling charge-density wave con-
fined to the spherical shell, which gives rise to the 
phenomenon of orbital angular momentum. The 
orbital functions that modulate the constant “spin” 
function shown graphically in Fig. 3 are given in 
Section 3.3. 
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 A B C  
 

 
Figure 2A–C. The orbitsphere current vector field pattern from 

the perspective of looking along the z axis, x axis, and y axis, 

respectively.  

 
 

3.2 Spin Function 

The orbitsphere spin function comprises a constant 
charge- (current-) density function with moving 
charge confined to a two-dimensional spherical shell. 
The magnetostatic current pattern of the orbitsphere 
spin function comprises an infinite series of correlated 
orthogonal great circle current loops wherein each 
charge- (current-) density element moves time 
harmonically with constant angular velocity 
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.
n

e n
m r

ω =
�

 (9) 

The uniform current density function Y0
0
(θ, φ) that 

gives rise to the spin of the electron is generated 
from a basis set current-vector field defined as the 
orbitsphere current-vector field (“orbitsphere-cvf”). 
The orbitsphere-cvf comprises a continuum of 
correlated orthogonal great circle current loops. The 
current pattern comprising two components is 
generated over the surface by two sets (steps 1 and 
2) of rotations of two orthogonal great circle current 
loops that serve as basis elements about each of the 
(ix, iy, 0iz) and ( / 2

x
−i , / 2yi , iz) axes, respec-

tively, by π radians. In Appendix III of Ref. 7 the 
continuous uniform electron current density function 
Y0

0
(θ, φ) with the same angular momentum compo-

nents, Lz = �/2 and Lxy = �/4, is then exactly gener-
ated from this orbitsphere-cvf as a basis element by a 
convolution operator comprising an autocorrelation-
type function. 

The orthogonal great circle basis set for step 1 is 
shown in Fig. 4. One half of the orbitsphere-cvf, the 
orbitsphere-cvf component of step 1, is generated by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 3. The orbital function modulates the constant (spin) 

function (shown for t = 0; three-dimensional view). 

 
 

the rotation of two orthogonal great circles about the  
(ix, iy, 0iz) axis by π wherein one basis-element great 
circle is initially in the yz plane and the other is in the 
xz plane: 
Step 1: 
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Figure 4. The current on the great circle in the y′z′ plane moves 

counterclockwise and the current on the great circle in the x′z′ 
plane moves clockwise. The xyz system is the laboratory frame, 

and the orthogonal-current-loop basis set is rigid with respect to 

the x′y′z′ system that rotates about the (ix, iy, 0iz) axis by π 

radians to generate the elements of the first component of the 

orbitsphere-cvf. The angular momentum of the orthogonal great 

circle current loops in the x′y′ plane that is evenly distributed 

over the surface is �/ 2 2 . 

 
 
The first component of the orbitsphere-cvf given by 
(10) can also be generated by each of rotating a great 
circle basis element initially in the yz or the xz plane 
about the (ix, iy, 0iz) axis by 2π radians, as shown in 
Figs. 5 and 6, respectively. 

The orthogonal great circle basis set for step 2 is 
shown in Fig. 7. The second half of the orbitsphere-
cvf, the orbitsphere-cvf component of step 2, is 
generated by the rotation of two orthogonal great 
circles about the ( / 2x−i , / 2yi , iz) axis by π, 
wherein one basis-element great circle is initially in 
the plane that bisects the xy quadrant and is parallel to 
the z axis and the other is in the xy plane: 
Step 2: 

 [ ]  

cos

2
cos

cos
sin ,

2
0

sin

n

n

n
n

n

r

x r
r

y r

z
r

φ

φ
φ

φ

φ

  
  
 ′     
     ′ = ⋅ +     
  ′          

u v w  (11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 5. The current pattern of the orbitsphere-cvf component 

of step 1 shown with 6° increments of θ from the perspective of 

looking along the z axis. The yz plane great circle current loop 

that served as a basis element was initially in the yz plane. 
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Figure 6. The current pattern of the orbitsphere-cvf component 

of step 1 shown with 6° increments of θ from the perspective of 

looking along the z axis. The great circle current loop that served 

as a basis element was initially in the xz plane. 

 
 
The second component of the orbitsphere-cvf given 
by (11) can also be generated by each of rotating a 
great circle basis element that is initially in the plane 
that bisects the xy quadrant and is parallel to the z axis 
or is in the xy plane about the ( / 2x−i , / 2yi , iz) 
axis by 2π radians, as shown in Figs. 8 and 9, respec-
tively. 

The orbitsphere-cvf is given by the superposition of 
the components from step 1 and from step 2. The 
current pattern of the orbitsphere-cvf generated by the 
rotations of the orthogonal great circle current loops 
is a continuous and total coverage of the spherical 
surface, but it is shown as visual representations using 
6° increments θ in Figs. 2A–C. 

The resultant angular momentum projections of 
Lxy = �/4 and Lz = �/2 from the convolution operator 
meet the boundary condition for the unique current 
with an angular velocity magnitude at each point on 
the surface given by (6) and give rise to the Stern–
Gerlach experiment, as shown in Ref. 7. Specifically, 
he further constraint that the current density is uni-
form such that the charge density is uniform, corre-
sponding to an equipotential, minimum-energy 
surface, is satisfied by using the orbitsphere-cvf as a 
basis element to generate Y0

0
(φ, θ) using a convolu-

tion operator comprising an autocorrelation-type 
function, as given in Appendix III of Ref. 7. The 
operator comprises the convolution of each great 
circle current loop of the orbitsphere-cvf, designated 
as the primary orbitsphere-cvf, with a second orbits- 
phere-cvf designated as the secondary orbitsphere-cvf, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. The current on the great circle in the plane that bisects 

the x′y′ quadrant and is parallel to the z′ axis moves clockwise, 

and the current on the great circle in the x′y′ plane moves 

counterclockwise. Rotation of the great circles about the 

( / 2
x

−i , / 2
y

i , iz) axis by π radians generates the elements 

of the second component of the orbitsphere-cvf. The angular 

momentum vector along the ( / 2
x

−i , / 2
y

i , iz) z axis is 

�/ 2 2 , corresponding to each of the z and –xy components of 

magnitude �/4. 

 
 
wherein the convolved secondary elements are 
matched for orientation, angular momentum, and 
phase to those of the primary. The resulting exact 
uniform current distribution obtained from the 
convolution has the angular momentum distribution, 
with components of Lxy = �/4 and Lz = �/2. 

3.3 Angular Functions 

The time, radial, and angular solutions of the wave 
equation are separable. Also, based on the radial 
solution, the angular charge- and current-density 
functions of the electron, A(θ, φ, t), must be a 
solution of the wave equation in two dimensions 
(plus time), 
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where ρ(r, θ, φ, t) = f(r)A(θ, φ, t) = 1/r
2δ(r – rn)A(θ, 

φ, t) and A(θ, φ, t) = Y(θ, φ)k(t); thus 

+ y

+ x



Randell L. Mills 
 

 

237 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. The current pattern of the orbitsphere-cvf component 

of step 2 shown with 6° increments of θ from the perspective of 

looking along the z axis. The great circle current loop that served 

as a basis element was initially in the plane that bisects the xy 

quadrant and was parallel to the z axis. 
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where v is the linear velocity of the electron. The 
charge-density functions, including the time-function 
factor, are, for � = 0, 
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and, for � ≠ 0, 
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where ( , )m
Y θ φ
�

 are the spherically harmonic func-
tions that spin about the z axis with angular frequency 
ωn, with Y0

0
(θ, φ) the constant function. Re{Y�

m
(θ, 

φ)e
iω

n
t
} = P�

m
(cos θ)cos(mφ + ωn′t), where to keep the 

form of the spherically harmonic as a traveling wave 
about the z axis, ωn′ = mωn. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. The current pattern of the orbitsphere-cvf component 

of step 2 shown with 6° increments of θ from the perspective of 

looking along the z axis. The great circle current loop that served 

as a basis element was initially in the xy plane. 

 
 
3.4 Acceleration without Radiation 

3.4.1 Special-Relativistic Correction to the Electron 
Radius 

The relationship between the electron wavelength 
and its radius is given by (4), where λ is the de 
Broglie wavelength. For each current-density element 
of the spin function the distance along each great 
circle in the direction of instantaneous motion under-
goes length contraction and time dilation. Using a 
phase-matching condition, the wavelengths of the 
electron and laboratory inertial frames are equated, 
and the corrected radius is given by 
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 (16) 

where the electron velocity is given by (6). (See Ref. 
7, Chapter 1, Special Relativistic Correction to the 
Ionization Energies section). e/me of the electron, the 
electron angular momentum of �, and µB are invari-
ant, but the mass and charge densities increase in the 
laboratory frame due to the relativistically contracted 
electron radius. As v → c, r/r ′ → 1/(2π) and r = λ, as 
shown in Fig. 10. 
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Figure 10. The normalized radius as a function of the velocity 

due to relativistic contraction (16). 

 
 

3.4.2 Nonradiation Based on the Space-Time 
Fourier Transform of the Electron Current 

The Fourier transform of the electron charge-
density function given by (8) is a solution of the 
three-dimensional wave equation in frequency space 
(k, ω space), as given in Chapter 1, Spacetime Fourier 
Transform of the Electron Function section, of Ref. 7. 
Then the corresponding Fourier transform of the 
current-density function K(s, Θ, Φ, ω) is given by 
multiplying by the constant angular frequency: 
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sn ⋅ vn = sn ⋅ c = ωn implies rn = λn, which is given by 
(16) in the case that k is the light-like k

0
. In this case, 

(17) vanishes. Consequently, space-time harmonics of 
ωn/c = k or ωn/c(ε/ε0)

1/2
 = k  for which the Fourier 

transform of the current-density function is nonzero 

do not exist. Radiation due to charge motion does not 
occur in any medium when this boundary condition is 
met. Nonradiation is also determined directly from 
the fields based on Maxwell’s equations, as given in 
Section 3.4.3. 

3.4.3 Nonradiation Based on the Electron Electro-
magnetic Fields and the Poynting Power Vec-
tor 

A point charge undergoing periodic motion acceler-
ates and as a consequence radiates according to the 
Larmor formula 
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where e is the charge, a is its acceleration, ε0 is the 
permittivity of free space, and c is the speed of light. 
Although an accelerated point particle radiates, an 
extended distribution modeled as a superposition of 
accelerating charges does not have to radiate.

(37,39,42–

44)
 In Ref. 3 and Appendix I, Chapter 1, of Ref. 7, the 

electromagnetic far field is determined from the 
current distribution in order to obtain the condition, if 
it exists, that the electron current distribution must 
satisfy such that the electron does not radiate. The 
current follows from (14)–(15). The currents corre-
sponding to (14) and the first term of (15) are static. 
Thus they are trivially nonradiative. The current due 
to the time-dependent term of (15) corresponding to 
p, d, f, etc., orbitals is 
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(19) 

where to keep the form of the spherical harmonic as a 
traveling wave about the z axis, ωn′ = mωn and N and 
N ′ are normalization constants. The vectors are 
defined as 
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 ˆ ˆ ˆ.rθ φ= ×  (21) 

“^” denotes the unit vectors û  ≡ u/|u|, non-unit 
vectors are in bold, and the current function is nor-
malized. For the electron source current given by 
(19), each comprising a multipole of order (�, m) with 
a time dependence e

iω
n
t
, the far-field solutions to 

Maxwell’s equations are given by 

 
.

.

( , ) ( ) ,

( , ) ( ) ,

M m

M m

i
a m g kr

k

a m g kr

= − ∇×

=

B X

E X

� �

� �

�

�

 (22) 

and the time-averaged power radiated per solid angle 
dP(�, m)/dΩ is 

 
22
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( , )
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d kπ
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X
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where 
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( , ) ( ) sin( ).
2( 1)
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M n

ek
a m Nj kr mks

c

ω

π

−
= Θ

+
�

�
� �

 (24) 

In the case that k is the light-like k
0
, then k = ωn/c, in 

(24), and (22)–(23) vanish for 

 .
n n n

s vT R r λ= = = =  (25) 

There is no radiation. 

3.5 Magnetic Field Equations of the Electron 

The orbitsphere is a shell of negative charge current 
comprising correlated charge motion along great 
circles. For � = 0 the orbitsphere gives rise to a 
magnetic moment of one Bohr magneton

(45)
 (the 

details of the derivation of the magnetic parameters, 
including the electron g factor, are given in Ref. 3 and 
Chapter 1 of Ref. 7): 

 24 1
 9.274 10 JT .

2
B

e

e

m
µ − −= = ×

�
 (26) 

The magnetic field of the electron shown in Fig. 11 is 
given by 
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( cos sin ) for ,
r n

e n

e
r r
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θθ θ= − <H i i

�
 (27) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 
 

Figure 11. The magnetic field of an electron orbitsphere (z axis 

defined as the vertical axis). 
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The energy stored in the magnetic field of the electron 
is 

 

2

2 2
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sin ,
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4
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e

e
E
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πµ πµ µ
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�
 (30) 

3.6 Stern–Gerlach Experiment 

The Stern–Gerlach experiment implies a magnetic 
moment of one Bohr magneton and an associated 
angular momentum quantum number of 1/2. Histori-
cally, this quantum number has been called the spin 
quantum number, s (s = 1/2, ms = ±1/2). The superpo-
sition of the vector projection of the orbitsphere 
angular momentum on the z axis is �/2, with an 
orthogonal component of �/4. Excitation of a resonant 
Larmor precession gives rise to � on an axis S that 
precesses about the z axis, called the spin axis, at the 
Larmor frequency at an angle of θ = π/3 to give a 
perpendicular projection of 
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3

sin  
3 4 RY

π
⊥ = = ±S i� �  (31) 

and a projection onto the axis of the applied magnetic 
field of 

 cos .
3 2

z

π
= = ±||S i

�
�  (32) 

The superposition of the �/2, z axis component of the 
orbitsphere angular momentum and the �/2, z axis 
component of S gives � corresponding to the ob-
served electron magnetic moment of a Bohr magne-
ton, µB. 

3.7 Electron g Factor 

As given in the Electron g Factor section of Refs. 7 
and 3, conservation of angular momentum of the 
orbitsphere permits a discrete change of its “kinetic 
angular momentum” (r × mv) by the applied magnetic 
field of �/2, and concomitantly the “potential angular 
momentum” (r × eA) must change by –�/2: 

 
2

e∆ = − ×L r A
�

 (33) 

 ˆ.
2 2

e
z

φ

π

 
= −  

�
 (34) 

In order that the change of angular momentum, ∆L, 
equal zero, φ must be Φ0 = h/(2e), the magnetic flux 
quantum. The magnetic moment of the electron is 
parallel or antiparallel to the applied field only. 
During the spin-flip transition, power must be con-
served. Power flow is governed by the Poynting 
power theorem: 

 0 0( ) .
2 2t t

µ ε∂ ∂   
∇ ⋅ × = − ⋅ − ⋅ − ⋅   ∂ ∂   

E H H H E E J E (35) 

Equation (36) gives the total energy of the flip 
transition, which is the sum of the energy of reorien-
tation of the magnetic moment (first term), the 
magnetic energy (second term), the electric energy 
(third term), and the dissipated energy of a fluxon 
treading the orbitsphere (fourth term), respectively: 

 

222 4
2 1 ,

2 3 2 3 2

spin

mag BE B
α α α α

µ
π π π

    
∆ = + + −         

(36) 

 ,spin

mag BE g Bµ∆ =  (37) 

where the stored magnetic energy corresponding to 
the ∂/∂t[(1/2)µ0H ⋅ H] term increases, the stored 
electric energy corresponding to the ∂/∂t[(1/2)ε0E ⋅ E] 
term increases, and the J ⋅ E term is dissipative. The 
spin-flip transition can be considered as involving a 
magnetic moment of g times that of a Bohr magneton. 

The magnetic moment, m, of (36) is twice that from 
the gyromagnetic ratio, as given by 

 
charge angular momentum

.
2 mass

m
⋅

=
⋅

 (38) 

The magnetic moment of the electron is the sum of 
the component corresponding to the kinetic angular 
momentum, �/2, and the component corresponding to 
the vector potential angular momentum, �/2, (33). 
The spin-flip transition can be considered as involv-
ing a magnetic moment of g times that of a Bohr 
magneton. The g factor is redesignated the fluxon g 
factor as opposed to the anomalous g factor, and it is 
given by (36): 

 

2

22 4
1 .

2 2 3 2 3 2

g α α α
α

π π π

   
= + + −   

   
 (39) 

For α–1
 = 137.03604(11),

(46)
 

 1.001159652120.
2

g
=  (40) 

The experimental value
(47)

 is 

 1.001159652188(4).
2

g
=  (41) 

The calculated and experimental values are within the 
propagated error of the fine-structure constant. 
Different values of the fine-structure constant have 
been recorded from different experimental tech-
niques, and α–1

 depends on a circular argument 
between theory and experiment.

(32)
 One measurement 

of the fine-structure constant based on the electron g 
factor is 1

egα −  = 137.036006(20).
(35)

 This value can be 
contrasted with equally precise measurements em-
ploying solid state techniques such as those based on 
the Josephson effect

(48)
 ( 1

Jα −  = 137.035963(15)) or 
the quantized Hall effect

(49)
 ( 1

Hα −  = 137.035300(400)). 
A method of determining α–1

 that depends on the 
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circular methodology between theory and experiment 
to a lesser extent is to substitute the independently 
measured fundamental constants µ0, e, c, and h into 
(71). The following values of the fundamental con-
stants are given by Weast:

(46) 

 7 1

0 4 10 Hm ,µ π − −= ×  (42) 

 191.6021892(46) 10 C.e −= ×  (43) 

 8 12.99792458(12) 10 ms ,c −= ×  (44) 

 34 16.626176(36) 10 JHz .h − −= ×  (45) 

For these constants 

 1 137.03603(82).α − =  (46) 

Substituting the α–1
 from (46) into (39) gives 

 1.001159652137.
2

g
=  (47) 

The experimental value
(47)

 is 

 1.001159652188(4).
2

g
=  (48) 

The postulated QED theory of g/2 is based on the 
determination of the terms of a postulated power 
series in α/π, where each postulated virtual particle is 
a source of postulated vacuum polarization that gives 
rise to a postulated term. The algorithm involves 
scores of postulated Feynman diagrams correspond-
ing to thousands of matrices with thousands of 
integrations per matrix requiring decades to reach a 
consensus on the “appropriate” postulated algorithm 
to remove the intrinsic infinities. The remarkable 
agreement between (47) and (48) demonstrates that 
g/2 may be derived in closed form from Maxwell’s 
equations in a simple straightforward manner that 
yields a result with 11-figure agreement with experi-
ment — the limit of the experimental capability of the 
measurement of α directly or the fundamental con-
stants to determine α. In Section 2 of Chapter 1 and 
Appendix II of Ref. 7 the Maxwellian result is 
contrasted with the QED algorithm of invoking 
virtual particles, zero-point fluctuations of the vac-
uum, and negative energy states of the vacuum. 
Rather than an infinity of radically different QED 

models, an essential feature is that Maxwellian 
solutions are unique. 

3.8 Spin and Orbital Parameters 

The total function that describes the current motion 
of each electron orbitsphere is composed of two 
functions. One function, the spin function, is spatially 
uniform over the orbitsphere, has a quantized angular 
velocity independent of angle, and gives rise to spin 
angular momentum. The other function, the modula-
tion function, can be spatially uniform — in which 
case there is no orbital angular momentum and the 
magnetic moment of the electron orbitsphere is one 
Bohr magneton — or not spatially uniform — in 
which case there is orbital angular momentum. The 
modulation function also rotates with a quantized 
angular velocity. 

The spin function of the electron corresponds to the 
nonradiative n = 1, � = 0 state of atomic hydrogen, 
which is well known as an s state or orbital. (See 
Fig. 1.) In cases of orbitals of heavier elements and 
excited states of one-electron atoms and atoms or ions 
of heavier elements that have the � quantum number 
not equal to zero and are not constant as given by 
(14), the constant spin function is modulated by a 
time- and spherically harmonic function as given by 
(15) and shown in Fig. 3. The modulation or traveling 
charge-density wave corresponds to an orbital angular 
momentum in addition to a spin angular momentum. 
These states are typically referred to as p, d, f, etc., 
orbitals. Application of Haus’s

(39)
 condition also 

predicts nonradiation for a constant spin function 
modulated by a time- and spherically harmonic orbital 
function. There is acceleration without radiation, as 
also shown in Section 3.4.3. (Also see Abbott and 
Griffiths,

(43)
 Goedecke,

(44)
 and Daboul and Jensen.

(42)
) 

However, in the case that such a state arises as an 
excited state by photon absorption, it is radiative due 
to a radial dipole term in its current-density function, 
since it possesses space-time Fourier transform 
components synchronous with waves traveling at the 
speed of light.

(39)
 (See Instability of Excited States 

section of Ref. 7.) 

3.8.1 Moment of Inertia and Spin and Rotational 
Energies 

The moments of inertia and the rotational energies 
as a function of the � quantum number for the solu-
tions of the time-dependent electron charge-density 
functions (14)–(15) given in Section 3.3 are solved 
using the rigid rotor equation.

(41)
 The details of the 

derivations of the results as well as the demonstration 
that (14)–(15) with the results given below are 
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solutions of the wave equation are given in Chapter 1, 
Rotational Parameters of the Electron (Angular 
Momentum, Rotational Energy, Moment of Inertia) 
section of Ref. 7. 

For � = 0 

 
2

,
2

e n
z spin

m r
I I= =  (49) 

 ,
2

z zL Iω= = ±i
�

 (50) 

 

2

, 2

2
2 2

2

1

2

1 1
,

2 2 4 2

rotational rotational spin spin

e n

e n

e n spin

E E I
m r

m r

m r I

 
 
 
  
 

 
 
 
  
 

 
 = =
  

   
 = =  
     

�

� �

 (51) 
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For � ≠ 0 
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    ,z total z spin z orbitalL L L= +  (55) 
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  0,z orbitalL =  (57) 

  0.
rotational orbital

E =  (58) 

The orbital rotational energy arises from a spin 
function (spin angular momentum) modulated by a 
spherically harmonic angular function (orbital angular 
momentum). The time-averaged mechanical angular 
momentum and rotational energy associated with the 
wave-equation solution comprising a traveling 
charge-density wave on the orbitsphere is zero, as 
given in (57) and (58), respectively. Thus the princi-
pal levels are degenerate except when a magnetic 
field is applied. In the case of an excited state, the 
angular momentum of � is carried by the fields of the 
trapped photon. The amplitudes that couple to exter-
nal magnetic and electromagnetic fields are given by 
(54) and (56), respectively. The rotational energy due 
to spin is given by (51), and the total kinetic energy is 
given by (52). 

3.9 Force Balance Equation 

The radius of the nonradiative (n = 1) state is solved 
using the electromagnetic force equations of Maxwell 
relating the charge- and mass-density functions 
wherein the angular momentum of the electron is 
given by �.

(7)
 The reduced mass arises naturally from 

an electrodynamic interaction between the electron 
and the proton of mass mp: 

 
2 2

1

2 2 2 2 3

1 1 1 0 1 1

1
,

4 4 4 4

e

p n

m v e Ze

r r r r r m rπ π πε π
= −
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 (59) 

 1 ,H
a

r
Z

=  (60) 

where aH is the radius of the hydrogen atom. 

3.10 Energy Calculations 

From Maxwell’s equations the potential energy V, 
kinetic energy T, and electric energy or binding 
energy Eele are 

 

2 2 2

0 1 0

2 18
 

2

4 4

4.3675 10 J

27.2 eV,

H

Ze Z e
V

r a

Z

Z

πε πε
−

− −
= =

= − × ×

= − ×

 (61) 
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T E dv
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 (64) 

The calculated Rydberg constant is 10,967,758 m
–1

; 
the experimental Rydberg constant is 10,967,758 m

–1
. 

For increasing Z the velocity becomes a significant 
fraction of the speed of light; thus special-relativistic 
corrections were included in the calculation of the 
ionization energies of one-electron atoms that are 
given in Table I. 

3.11 Resonant Line Shape and Lamb Shift 

The spectroscopic line-width arises from the classi-
cal rise-time bandwidth relationship, and the Lamb 
shift is due to conservation of energy and linear 
momentum and arises from the radiation reaction 
force between the electron and the photon. It follows 
from the Poynting power theorem (35) with spherical 
radiation that the transition probabilities are given by 
the ratio of power and the energy of the transition.

(52)
 

The hydrogen electric dipole transition probability 
due to the transient radial current from the initial 
quantum state ni, �, m�, ms and radius rni

 to the final ni, 
� ± 1, m�, ms  and radius rnf

 derived in Ref. 7 is 
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 (66) 

This rise-time gives rise to Γ, the spectroscopic line-
width. The relationship between the rise-time and the 
bandwidth is given by Siebert:

(53)
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Applying the Schwartz inequality, the relationship 
between the rise-time and the bandwidth is

3
 

 
1

.τ
π

Γ ≥  (69) 

From (66) the line-width is proportional to the ratio of 
the quantum Hall resistance, h/e

2
, and η, the radiation 

resistance of free space: 

 0

0

.
µ

η
ε

=  (70) 

And the quantum Hall resistance given in the Quan-
tum Hall Effect section of Ref. 7 was derived using 
the Poynting power theorem. Also, from (66), the 
line-width is proportional to the fine-structure con-
stant, α: 
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During a transition, the total energy of the system 
decays exponentially. Applying (67) and (68) to the 
case of exponential decay, 
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 (73) 

where the rise-time, τ, is the time required for h(t) of 
(72) to decay to 1/e of its initial value and where the 
bandwidth, Γ, is the half-power bandwidth, the 
distance between points at which 
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Table I: Relativistically Corrected Ionization Energies for Some One-Electron Atoms 
 

One-e 

Atom 
Z 

β (Eqn. (1.267) of 

Ref. 7) 

Theoretical Ionization Energies 

(eV) ((60), (64), and Eqn. 

(1.272) of Ref. 7) 

Experimental 

Ionization Energies 

(eV)
a
 

Relative Difference 

between Experimental 

and Calculated
b
 

H 1 0.00730 13.59847 13.59844 –0.000002 

He
+
 2 0.01459 54.41826 54.41778 –0.000009 

Li
2+

 3 0.02189 122.45637 122.45429 –0.000017 

Be
3+

 4 0.02919 217.72427 217.71865 –0.000026 

B
4+

 5 0.03649 340.23871 340.2258 –0.000038 

C
5+

 6 0.04378 490.01759 489.99334 –0.000049 

N
6+

 7 0.05108 667.08834 667.046 –0.000063 

O
7+

 8 0.05838 871.47768 871.4101 –0.000078 

F
8+

 9 0.06568 1103.220 1103.1176 –0.000093 

Ne
9+

 10 0.07297 1362.348 1362.1995 –0.000109 

Na
10+

 11 0.08027 1648.910 1648.702 –0.000126 

Mg
11+

 12 0.08757 1962.945 1962.665 –0.000143 

Al
12+

 13 0.09486 2304.512 2304.141 –0.000161 

Si
13+

 14 0.10216 2673.658 2673.182 –0.000178 

P
14+

 15 0.10946 3070.451 3069.842 –0.000198 

S
15+

 16 0.11676 3494.949 3494.1892 –0.000217 

Cl
16+

 17 0.12405 3947.228 3946.296 –0.000236 

Ar
17+

 18 0.13135 4427.363 4426.2296 –0.000256 

K
18+

 19 0.13865 4935.419 4934.046 –0.000278 

Ca
19+

 20 0.14595 5471.494 5469.864 –0.000298 

Sc
20+

 21 0.15324 6035.681 6033.712 –0.000326 

Ti
21+

 22 0.16054 6628.064 6625.82 –0.000339 

V
22+

 23 0.16784 7248.745 7246.12 –0.000362 

Cr
23+

 24 0.17514 7897.827 7894.81 –0.000382 

Mn
24+

 25 0.18243 8575.426 8571.94 –0.000407 

Fe
25+

 26 0.18973 9281.650 9277.69 –0.000427 

Co
26+

 27 0.19703 10016.63 10012.12 –0.000450 

Ni
27+

 28 0.20432 10780.48 10775.4 –0.000471 

Cu
28+

 29 0.21162 11573.34 11567.617 –0.000495 
a
 From theoretical calculations, interpolation of H isoelectronic and Rydberg series, and experimental data.

(7,50,51) 

b
 (Experimental-theoretical)/experimental. 

 
 
From (67),

(53)
 

 .Tτ =  (75) 

From (68),
(53)

 

 
1

.
Tπ

Γ =  (76) 

From (75) and (76) the relationship between the 

rise-time and the bandwidth for exponential decay is 

 
1

.τ
π

Γ =  (77) 

Photons obey Bose–Einstein statistics. The emitted 
radiation, the summation of an ensemble of emitted 
photons each of an exact frequency and energy given 
by (87), appears as a wave train with effective length 
c/Γ. Such a finite pulse of radiation is not exactly 
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monochromatic but has a frequency spectrum cover-
ing an interval of the order Γ. The exact shape of the 
frequency spectrum is given by the square of the 
Fourier transform of the electric field. Thus the 
amplitude spectrum is proportional to 
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1
( ) .tt i t

t

e e dt
i

α ωω
α ω

∞
− −∝ =

−∫E  (78) 

The coefficient αt corresponds to the spectroscopic 
line-width and also to a shift in frequency that arises 
from the radiation reaction force between the electron 
and the photon. The energy radiated per unit fre-
quency interval is therefore 

 0 2

0

( ) 1
,

2 ( ( / 2)

dI
I

d

ω

ω π ω ω ω 2

Γ
=

− − ∆ ) + Γ
 (79) 

where I0 is the total energy radiated. The spectral 
distribution is called a resonant line shape. The width 
of the distribution at half-maximum intensity is called 
the half-width or line-breadth and is equal to Γ. 
Shown in Fig. 12 is such a spectral line. Because of 
the reactive effects of radiation, the line is shifted in 
frequency. The small radiative shift of the energy 
levels of atoms was first observed by Lamb in 
1947

(24)
 and is called the Lamb shift in his honor. 

The Lamb shift of the 
2
P1/2 state of the hydrogen 

atom with quantum number � = 1 is calculated by 
applying conservation of energy and linear momen-
tum to the emitted photon, electron, and atom. The 
photon emitted by an excited state atom carries away 
energy, linear momentum, and angular momentum. 
The initial and final values of the energies and 
momenta must be conserved between the atom, the 
electron, and the photon. (Conservation of angular 
momentum is used to derive the photon’s equation in 
the Equation of the Photon section of Ref. 7). Con-
sider an isolated atom of mass M with an electron of 
mass me in an excited state level at an energy E and 
moving with velocity V along the direction in which 
the photon is to be emitted (the components of motion 
perpendicular to this direction remain unaffected by 
the emission and may be ignored). The energy above 
the “ground” state at rest is 

 21
.

2
E M
 

+ 
 

V  (80) 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 12. Broadening of the spectral line due to the rise-time 

and shifting of the spectral line due to the radiative reaction. The 

resonant line shape has width Γ. The level shift is ∆ω. 

 
 
When a photon of energy Ehυ is emitted, the atom 
and/or electron recoils and has a new velocity 

 +V v  (81) 

(which is a vector sum in that V and v may be op-
posed) and a total energy of 

 21
( ) .

2
M +V v  (82) 

By conservation of energy 

 2 21 1
( ) ,

2 2
hE M E Mυ+ = + +V V v  (83) 

so that the actual energy of the photon emitted is 
given by 

 21
.

2
h R DE E M M E E Eυ = − − = − −v vV  (84) 

The photon is thus deficient in energy by a recoil 
kinetic energy 

 21
,

2
RE M= v  (85) 

which is independent of the initial velocity V, and by 
a thermal or Doppler energy 
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 ,DE M= vV  (86) 

which depends on V; therefore it can be positive or 
negative. 

Momentum must also be conserved in the emission 
process. The energy, E, of the photon is given by 
Planck’s equation: 

 .
2

c
E h h hf h

ω
ω υ

π λ
= = = = =�  (87) 

From special relativity 

 2.E mcω= =�  (88) 

Thus p, the momentum of the photon, is 

 ,hE
mc

c

υ= =p  (89) 

where c is the velocity of light, so that 

 ( ) .hE
M M

c

υ= + +V V v  (90) 

And the recoil momentum is 

 .hE
M

c

υ= −v  (91) 

Thus the recoil energy is given by 

 
2

22

h
R

E
E

Mc

υ=  (92) 

and depends on the mass of the electron and/or atom 
and the energy of the photon. The Doppler energy ED 
depends on the thermal motion of the atom and will 
have a temperature-dependent distribution of values. 
A mean value, ED, can be defined that is related to the 
mean kinetic energy per translational degree of 
freedom

(55,56)
 

 
1

2
DE kT≅  (93) 

by 

 
2

2
2 ,K

D K R h

E
E E E E

Mc
ν≅ =  (94) 

where k is Boltzmann’s constant and T is the absolute 
temperature. As a result, the statistical distribution in 
energy of the emitted photons is displaced from the 
true excited-state energy by –ER and broadened by ED 
into a Gaussian distribution of width 2 DE . The 
distribution for absorption has the same shape but is 
displaced by +ER. 

For the transition of the hydrogen atom with n = 2 
and � = 0 in the initial and final states, the emitted 
angular radiation power pattern is uniform. The linear 
momentum of the photon is balanced by the recoil 
momentum of the entire atom of mass mH. The recoil 
frequency of the hydrogen atom, ∆f, is given by 
combining (87) and (92): 
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h h
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υ υω
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∆
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where Ehυ corresponding to the recoil energy (92) is 
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 (96) 

However, during the emission of a photon by an 
excited-state atom with � ≠ 0, the angular radiation 
power pattern is not uniform because the charge-
density of the electron is not uniform. With � ≠ 0, the 
charge-density function is a constant function plus a 
spherically harmonic function (angular modulation) 
corresponding to spin and orbital angular momenta, 
respectively, as given in Sections 3.3 and 3.8 and the 
One-Electron Atom section of Ref. 7. In the case of 
� = 1, m� = 0 designated the px orbital, the angular 
charge-density function is 
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 (97) 

where Re{Y�
m
(θ, φ)e

iω
n
t
} = P�

m
(cos θ)cos(mφ + ωnt) 

and ωn = 0 for m = 0. Thus 

 1, cos .zY θ=  (98) 

Figure 3 gives a pictorial representation of how the 
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modulation function changes the electron density on 
the orbitsphere for several � values. Consequently, 
rather than the electron recoiling as a point at the 
origin with transfer of the momentum to the nucleus 
such that the recoil is with the atom, the electron 
recoils independently of the atom, and it receives the 
majority of the recoil momentum according to (92) 
since the electron mass is 1/1836 times that of the 
nucleus. The conservation of the momentum between 
the electron and the photon depends on the angular 
distribution of the charge density relative to the 
photon linear propagation axis. Thus the solid angle 
must be considered. As given in the Equation of the 
Photon section of Ref. 7, the angular momentum, m, 
from the time-averaged angular-momentum density of 
the emitted photon is given by Eqn. (16.61) of Jack-
son

(57)
 in cgs units: 

 41
Re[ ( *)] ,

8
dx

cπ
= × × =∫m r E B �  (99) 

where the energy, E, is given from the Poynting 
power density:

(58)
 

 4Re( *) .
4

c
E dx ω

π
= × =∫ E H �  (100) 

Since the fields have the same multipolarity as the 
source, from (99)–(100), the radiation power pattern 
depends on the integral of the angular function 
squared, (Y�

m
(θ, φ))

2
. Specifically, the radiation power 

pattern of the electron in the 
2
P1/2 (� = 1; m� = 0) state 

follows from the integral of the square of (98) over 
the spherical solid angle, as given by McQuarrie:

(41)
 

 

2

0 2

1

0 0

4
( ( , )) sin .

3
Y d d

π π π
θ φ θ θ φ =∫ ∫  (101) 

The inverse of (101) is the weighting factor of mo-
mentum transfer due to the radiation power pattern, as 
given for antennas after Kong.

(59)
 

The spherical and time harmonics, Re{Y�
m
(θ, 

φ)e
iω

n
t
}, of the px orbital and 

2
P1/2 state correspond to a 

constant current about the z axis. In this case, the 
photon-momentum transfer for the 

2
P1/2 → 

2
S1/2 

transition causes an excitation of a Larmor precession 
of a vector S with � of angular momentum about the z 
axis at an angle of θ = π/3, as given in the Spin Angu-
lar Momentum of the Orbitsphere-cvf and Orbitsphere 
(Y0

0
(θ, φ)) � = 0 section of Ref. 7. In this case, the 

orbital angular momentum (Eqn. (2.66) of Ref. 7) is 

zero before and after the transition, and the invariance 
of each of e/me of the electron, the electron angular 
momentum of �, and the electron magnetic moment of 
µB from the spin angular momentum is maintained. 
From Eqn. (1.84) of Ref. 7, the projection of S onto the 
transverse plane (xy plane) is S⊥ = �sin(π/3) = 

3 / 4
RY± i� . Then the photon energy is corrected by 

the factor 3/ 4  due to electron recoil from the 
emission of a photon from the 

2
P1/2 state corresponding 

to the rotating transverse component of momentum 
transfer. In this case, Ehυ corresponding to the recoil 
energy (92), including the factor from (101), is 
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 (102) 

The electron contribution to the Lamb shift of the 
2
P1/2 state of the hydrogen atom relative to the higher-

energy state 
2
S1/2 is given by combining (87), (92), 

(101), and (102): 
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∆
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wherein the reduced mass of the electron given by 
Eqn. (1.234) of Ref. 7 corrects for the finite mass of 
the nucleus during excitation of the precession of S.

(60)
 

Furthermore, since S rotates about the z axis at θ = π/3, 
it has a static projection of the angular momentum of 
S|| = ±�cos(π/3) = ±(�/2)iZR

 as given by Eqn. (1.85) of 
Ref. 7. The energy and angular momentum of the 
photon correspond according to (89) and (99)–(100). 
Therefore the recoil energy of the photon correspond-
ing to momentum transfer to the atom along the z axis 
for the 

2
P1/2 transition is given by the sum of the atom-

alone term given by (95) and that due to S||, minus the 
electron recoil term corresponding to S⊥: 
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 (104) 
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The momentum of the electron, atom, and photon are 
conserved. The total recoil energy is the sum of the 
electron component (103) and the atom component 
(104). Thus the calculated Lamb shift due to both 
components of momentum transfer is 

 
1052.48 MHz 5.3839 MHz

1057.87 MHz.

f∆ = +

=
 (105) 

The experimental Lamb shift is ∆f = 1057.862 
MHz.

(61)
 

3.12 Spin-Orbital Coupling (Fine Structure) 

The electron’s motion in the hydrogen atom is 
always perpendicular to its radius; consequently, as 
shown by (7), the electron’s angular momentum of � 
is invariant. Furthermore, the electron is nonradiative 
due to its angular motion, as shown in Section 3.4. 
The radiative instability of excited states is due to a 
radial dipole term in the function representative of the 
excited state due to the interaction of the photon and 
the excited-state electron, as shown in the Instability 
of Excited States section of Ref. 7. The angular 
momentum of the photon given in the Equation of the 
Photon section of Ref. 7 is m = ∫(8πc)

–1
Re[r × (E × 

B*)]dx
4
 = �. It is conserved for the solutions of the 

resonant photons and excited-state electron functions 
given in the Excited States of the One-Electron Atom 
(Quantization) section and the Equation of the Photon 
section of Ref. 7. Thus the electrodynamic angular 
momentum and the inertial angular momentum are 
matched such that the correspondence principle holds. 
It follows from the principle of conservation of 
angular momentum that e/me of the Bohr magneton 
(26) is invariant (see the Determination of Or-
bitsphere Radii section of Ref. 7). 

A magnetic field is a relativistic effect of the elec-
trical field, as shown by Jackson.

(62)
 No energy term 

is associated with the magnetic field of the electron of 
the hydrogen atom unless another source of magnetic 
field is present. In the case of spin-orbit coupling, the 
invariant � of spin angular momentum and orbital 
angular momentum each gives rise to a corresponding 
invariant magnetic moment of a Bohr magneton, and 
their corresponding energies superimpose, as given in 
the Orbital and Spin Splitting section of Ref. 7. The 
interaction of the two magnetic moments gives rise to 
a relativistic spin-orbit coupling energy. The vector 
orientations of the momenta must be considered as 
well as the condition that flux be linked by the 
electron in units of the magnetic flux quantum in 
order to conserve the invariant electron angular 

momentum of �. The energy may be calculated with 
the additional conditions of the invariance of the 
electron’s charge and mass to charge ratio e/me. 

As shown in Section 3.7 and the Electron g Factor 
section of Ref. 7 (Eqn. (1.160) of Ref. 7 and second 
right-hand side term of Eqn. (36)), flux must be 
linked by the electron orbitsphere in units of the 
magnetic flux quantum that treads the orbitsphere at 
v = c with a corresponding energy of 

 2 .
2

fluxon

mag BE B
α

µ
π

=  (106) 

As shown in the Orbitsphere Equation of Motion for � 
= 0 Based on the Current Vector Field (CVF) section 
of Ref. 7, the maximum projection of the rotating spin 
angular momentum of the electron onto an axis is 

3/ 4 �. From (38) the magnetic flux due to the spin 
angular momentum of the electron is

(45) 
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3
,

4 2 e

e

r m r

µ µ µ
= =B

�
 (107) 

where µ is the magnetic moment. The maximum 
projection of the orbital angular momentum onto an 
axis is �, as shown in the Orbital and Spin Splitting 
section of Ref. 7, with a corresponding magnetic 
moment of a Bohr magneton µB. Substituting the 
magnetic moment of µB corresponding to the orbital 
angular momentum and (107) for the magnetic flux 
corresponding to the spin angular momentum into 
(106) gives the spin-orbit coupling energy Es/o: 
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e e

ee
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 (108) 

The Bohr magneton corresponding to the orbital 
angular momentum is invariant and the corresponding 
invariant electron charge e is common with that 
which gives rise to the magnetic field due to the spin 
angular momentum. The condition that the magnetic 
flux quantum tread the orbitsphere at v = c with the 
maintenance of the invariance of the electron’s mass 
to charge ratio e/me and electron angular momentum 
of � requires that the radius and the electron mass of 
the magnetic field term of (108) be relativistically 
corrected. As shown in Section 3.4.1 and the Space-
time Fourier Transform of the Electron Function and 
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Determination of Orbitsphere Radii sections of Ref. 7, 
the relativistically corrected radius r* follows from 
the relationship between the electron wavelength and 
the radius: 

 2 .rπ λ=  (109) 

As shown in the Excited States of the One-Electron 
Atom (Quantization) section of Ref. 7, the phase-
matching condition requires that the electron wave-
length be the same for orbital and spin angular 
momentum. With v = c, 

 * .r λ=  (110) 

Thus 

  * .
2

r
r

π
=  (111) 

The relativistically corrected mass m* follows from 
(111) with maintenance of the invariance of the 
electron angular momentum of � given by (6) and (7): 

 .e

e

m m r
m r

× =r v
�

 (112) 

With (111), the relativistically corrected mass m* is 

 * 2 .em mπ=  (113) 

With the substitution of (111) and (113) into (108), 
the spin-orbit coupling energy Es/o is given by 
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 (114) 

(The magnetic field in this case is equivalent to that 
of a point electron at the origin with 3/ 4 � of 
angular momentum.) 

In the case that n = 2, the radius given by (4) is r = 

2a0. The predicted energy difference between the 
2
P3/2 

and 
2
P1/2 levels of the hydrogen atom, Es/o, given by 

(114) is 
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e
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απµ
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wherein � = 1 and both levels are equivalently Lamb 
shifted. 

Es/o may be expressed in terms of the mass-energy 
of the electron. The energy stored in the magnetic 
field of the electron orbitsphere (30) is 
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e n

e
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πµ
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As shown in the Pair Production section of Ref. 7 
with the v = c condition, the result of the substitution 
of αa0 = �C for rn and the relativistic mass, 2πme, for 
me, and multiplication by the relativistic correction, 
α–1

, which arises from Gauss’s law surface integral 
and the relativistic invariance of charge, is 

 2.mag eE m c=  (117) 

Thus (115) can be expressed as 
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 (118) 

Using the Planck equation, the corresponding fre-
quency, ∆fs/o, is 

 / 10,927.0 MHz.
s o

f∆ =  (119) 

As in the case of the 
2
P1/2 → 

2
S1/2 transition, the 

photon-momentum transfer for the 
2
P3/2 → 

2
P1/2 

transition causes an excitation of a Larmor precession 
of a vector S with � of angular momentum about the z 
axis at an angle of θ = π/3, as given in the Spin 
Angular Momentum of the Orbitsphere-cvf and 
Orbitsphere (Y0

0
(θ, φ)) � = 0 section of Ref. 7. In 

addition, ∆m� = –1; then the photon energy is cor-
rected by the factor 1 – 3/ 4  due to electron recoil 
from the emission of a photon from the 

2
P3/2 state 

corresponding to the rotating transverse component of 
momentum transfer. In this case, from (102), Ehυ is 
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The electron contribution to the recoil shift of the 
2
P3/2 → 

2
P1/2 transition given by (103) and (120) is 
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 (121) 

Furthermore, ∆m� = –1 corresponds to the static 
angular momentum change of �iZR

. Therefore, from 
(104), the recoil energy of the photon corresponding 
to momentum transfer to the atom along the z axis for 
the 

2
P3/2 → 

2
P1/2 transition due to the atom-alone term 

given by (95) and that due to ∆m� = –1 minus the 
electron recoil term corresponding to S⊥ is 
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 (122) 

The momentum of the electron, atom, and photon are 
conserved. The total recoil energy is the sum of the 
electron component (121) and the atom component 
(122). Thus the calculated recoil frequency, ∆fR, shift 
due to both components of momentum transfer is 

 
25.1883 MHz 17.2249 MHz

42.4132 MHz,

Rf∆ = +

=
 (123) 

corresponding to an energy, ER, of 

 71.75407 10  eV.RE
−= ×  (124) 

The energy, EFS, and frequency, ∆fFS, for the 
2
P3/2 → 

2
P1/2 transition called the fine-structure splitting is 

given by the sum of (118), (121), and (122) and the 
sum of (119) and (123), respectively: 
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 (125) 

 
10,927.0 MHz 42.4132 MHz

10,969.4 MHz.

FSf∆ = +

=
 (126) 

The energy of 4.53659 × 10
–5

 eV corresponds to a 
frequency of 10,969.4 MHz given by (125) and (126), 
respectively, or a wavelength of 2.73298 cm. The 
experimental value of the 

2
P3/2 → 

2
P1/2 transition 

frequency is 10,969.1 MHz.
(61,63)

 The large natural 
widths of the hydrogen 2p levels limits the experi-
mental accuracy,

(63)
 yet, given this limitation, the 

agreement between the theoretical and experimental 
fine structure is excellent and within the cited errors. 

3.13 Spin-Nuclear Coupling (Hyperfine Structure) 

The radius of the hydrogen atom is increased or 
decreased very slightly due to the Lorentzian force on 
the electron due to the magnetic field of the proton 
and its orientation relative to the electron’s angular 
momentum vector. The additional small centripetal 
magnetic force is the relativistic corrected Lorentzian 
force, Fmag, as also given in the Two-Electron Atom 
and Three, Four, Five, Six, Seven, Eight, Nine, Ten, 
Eleven through and Twenty-Electron Atoms sections 
of Ref. 7. 

The orbitsphere with � = 0 is a shell of negative 
charge current comprising correlated charge motion 
along great circles. The superposition of the vector 
projection of the orbitsphere angular momentum on 
the z axis is Lz = �/2 (Eqn. (1.77) of Ref. 7), with an 
orthogonal component of Lxy = �/4 (Eqn. (1.76) of 
Ref. 7). The magnetic field of the electron at the 
nucleus due to Lz, after McQuarrie,

(45)
 is 
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where µ0 is the permeability of free space (4π × 10
–7

 
N/A

2
). An electrodynamic force or radiation reaction 

force, a force dependent on the second derivative of 
the charge’s position with respect to time, arises 
between the electron and the proton. This force, given 
in Sections 6.6, 12.10, and 17.3 of Jackson,

(64)
 

achieves the condition that the sum of the mechanical 
momentum and electromagnetic momentum is 
conserved. 

The magnetic moment of the proton, µP, aligns in 
the direction of Lz, but experiences a torque due to the 
orthogonal component Lxy. As shown in the Or-
bitsphere Equation of Motion for � = 0 Based on the 
Current Vector Field (CVF) section of Ref. 7, the 
magnetic field of the orbitsphere gives rise to the 
precession of the magnetic moment vector of the 
proton directed from the origin of the orbitsphere at 
an angle of θ = π/3 relative to the z axis. The preces-
sion of µP forms a cone in the nonrotating laboratory 
frame to give a perpendicular projection of 
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,
4

P Pµ µ⊥ = ±  (128) 

after Eqn. (1.84) of Ref. 7, and a projection onto the z 
axis of 

 ,
2

P
P

µ
µ = ±||  (129) 

after Eqn. (1.85) of Ref. 7. At torque balance Lxy also 
precesses about the z axis at 90° with respect to µP||. 
Using (127), the magnitude of the force Fmag between 
the antiparallel field of the electron and µP is 
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r m r
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×
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B �
 (130) 

The radiation reaction force corresponding to photon 
emission or absorption is radial, as given in the 
Equation of the Electric Field inside the Orbitsphere 
section of Ref. 7. The reaction force on the electron 
due to the force of the electron’s field on the magnetic 
moment of the proton is the corresponding relativistic 
central force, Fmag, which acts uniformly on each 
charge- (mass-) density element of the electron. The 
magnetic central force is derived as follows from the 

Lorentzian force, which is relativistically corrected. 
The Lorentzian force at each point of the electron 
moving at velocity v due to a magnetic flux B is 

 .mag e= ×F v B  (131) 

Equations (130) and (131) may be expressed in terms 
of the electron velocity given by (6): 
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µ µ
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 (132) 

where B is the magnetic flux of the proton at the 
electron. (The magnetic moment m of the proton is m 
= µPiz, and the magnetic field of the proton follows 
from the relationship between the magnetic dipole 
field and the magnetic moment m, as given by 
Jackson.

(65)
) In the light-like frame the velocity v is 

the speed of light, and B corresponds to the time-
dependent component of the proton magnetic moment 
given by (128). Thus the central force is 
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2 4
mag P

e c

r

µα
µ= ±F  (133) 

where the relativistic factor from Eqn. (1.228) of Ref. 
7 is α, the plus corresponds to antiparallel alignment 
of the magnetic moments of the electron and proton, 
and the minus corresponds to parallel alignment. 
From (59) the outward centrifugal force (Eqn. (1.220) 
of Ref. 7) on the electron is balanced by the electric 
force (Eqn. (1.221) of Ref. 7) and the magnetic forces 
given by Eqn. (1.231) of Ref. 7 and (133): 
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Using (6), 
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e
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α µ µ= ±  (138) 
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ec

παµ
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where µe is the electron reduced mass given by Eqn. 
(1.234) of Ref. 7, aH is the radius of the hydrogen 
atom given by Eqn. (1.238) of Ref. 7, the plus corre-
sponds to parallel alignment of the magnetic moments 
of the electron and proton, and the minus corresponds 
to antiparallel alignment. 

3.13.1 Energy Calculations 

The magnetic energy to flip the orientation of the 
proton’s magnetic moment, µP, from antiparallel to 
parallel to the direction of the magnetic flux Bs of the 
electron (180° rotation of the magnet moment vector), 
given by the first term of (36), and (127), and (128), 
is 
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where the Bohr magneton, µB, is given by (26). 
The change in the electric energy of the electron 

due to the slight shift in its radius is given by the 
difference between the electric energies associated 
with the two possible orientations of the magnetic 
moment of the electron with respect to the magnetic 
moment of the proton, parallel versus antiparallel. 
Each electric energy is given by substituting the 
corresponding radius given by (139) into (64). The 
change in electric energy for the flip from antiparallel 
to parallel alignment, /S N

eleE∆ , is 
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In addition, the interaction of the magnetic moments 
of the electron and proton increases the magnetic 
energy, Emag, of the electron given by (30). The term 
of Emag for the hyperfine structure of the hydrogen 
atom is similar to that of muonium, given by (161) in 
Section 3.14: 
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where the contribution corresponding to electron spin 
gives the first term, 1, and the second term, (2/3)

2
, 

corresponds to the rotation of the electron about the z 
axis corresponding to the precession of Lxy. The 
geometrical factor of 2/3 for the rotation is given in 
the Derivation of the Magnetic Field section in 
Chapter 1 (Eqn. (1.119)) of Ref. 7, and the energy is 
proportional to the magnetic field strength squared, 
according to (29). The relativistic factor from Eqns. 
(1.228) and (1.140) and (2.166) of Ref. 7 is α times 
(cos(π/3))

2
, where the latter term is due to the nuclear 

magnetic moment oriented θ = π/3 relative to the z 
axis. The energy is proportional to the magnetic field 
strength squared, according to (29). 

The total energy of the transition from antiparallel 
to parallel alignment, /S N

totalE∆ , is given as the sum of 
(140)–(142): 
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 (143) 

The energy is expressed in terms of wavelength using 
the Planck relationship, (87): 

 
/

21.10610 cm.
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hc

E
λ = =

∆
 (144) 

The experimental value from the hydrogen maser is 
21.10611 cm.

(66)
 The 21 cm line is important in 

astronomy for determining the presence of hydrogen. 
The remarkable agreement between the calculated 
and experimental values of the hyperfine structure is 
only limited by the accuracy of the fundamental 
constants in (139)–(142). 

3.14 Muonium Hyperfine Structure Interval 

Muonium (µ+
e

–
, M) is the hydrogen-like bound 

state of a positive muon and an electron. The solution 
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of the ground state (1
2
S1/2) hyperfine structure inter-

val of muonium, ∆νMu, is similar to that of the hydro-
gen atom. The electron binds to the muon as both 
form concentric orbitspheres with a minimization of 
energy. From (59) and (134) the outward centrifugal 
force (Eqn. (1.220) of Ref. 7) on the electron is 
balanced by the electric force (Eqn. (1.221) of Ref. 
7) and the magnetic forces due to the inner positive 
muon given by Eqn. (1.231) of Ref. 7 and (133). The 
resulting force balance equation is the same as that 
for the hydrogen atom given by (134) with the muon 
mass, mµ, replacing the proton mass, m, and the 
muon magnetic moment, µµ, replacing the proton 
magnetic moment, µP. The radius of the electron, r2, 
is given by 
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Using (6), 
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where µe,µ is the muonium electron reduced mass 
given by Eqn. (1.234) of Ref. 7, with the mass of the 
proton replaced by the mass of the muon, and aµ is 
the Bohr radius of the muonium atom given by (170), 
with the electron reduced mass, µe (Eqn. (1.234) of 
Ref. 7), replaced by µe,µ. The plus sign corresponds to 
parallel alignment of the magnetic moments of the 
electron and muon, and the minus sign corresponds to 
antiparallel alignment. 

The radii of the muon, r1, in different spin states 

can be determined from r2, the radius of the electron 

(149)–(150), and the opposing forces on the muon 

due to the bound electron. The outward centrifugal 

force (Eqn. (1.220) of Ref. 7) on the muon is balanced 

by the reaction forces given by (145): 
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Using (6), 
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Using (149)–(150) for r2, 
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where the plus corresponds to parallel alignment of 
the magnetic moments of the electron and muon, and 
the minus corresponds to antiparallel alignment. 

3.14.1 Energy Calculations 

The magnetic energy ( )spin

mag MuE ν∆ ∆  to flip the ori-
entation of the muon’s magnetic moment, µµ, from 
antiparallel to parallel to the direction of the magnetic 
flux Bs of the electron (180° rotation of the magnet 
moment vector) given by (140) is 
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wherein the muon magnetic moment replaces the 
proton magnetic moment, and the electron Bohr 
magneton, µB, is given by (26). 

An electric field equivalent to that of a point charge 
of magnitude +e at the origin only exists for r1 < r ≤ 
r2. Thus the change in the electric energy of the 
electron due to the slight shift in its radius is given by 
the difference between the electric energies associated 
with the two possible orientations of the magnetic 
moment of the electron with respect to the magnetic 
moment of the muon, parallel versus antiparallel. 
Each electric energy is given by substituting the 
corresponding radius given by (148) into (64) or 
(141). The change in electric energy for the flip from 
antiparallel to parallel alignment is 
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For each lepton, applying a magnetic field with a 
resonant Larmor excitation gives rise to a precessing 
angular momentum vector S of magnitude � directed 
from the origin of the orbitsphere at an angle of θ = 
π/3 relative to the applied magnetic field. As given in 
the Spin Angular Momentum of the Orbitsphere-cvf 
and Orbitsphere (Y0

0
(θ, φ)) � = 0 section of Ref. 7, S 

rotates about the axis of the applied field at the 
Larmor frequency. The magnitude of the components 
of S that are parallel and orthogonal to the applied 
field (Eqns. (1.84)–(1.85) of Ref. 7) are �/2 and 

3/ 4 �, respectively. Since both the radio frequency 

(RF) field and the orthogonal components shown in 
Fig. 1.15 of Ref. 7 rotate at the Larmor frequency, the 
RF field that causes a Stern–Gerlach transition 
produces a stationary magnetic field with respect to 
these components, as described by Patz.

(67)
 The 

corresponding central field at the orbitsphere surface 
given by the superposition of the central field of the 
lepton and that of the photon follows from Eqns. 
(2.10)–(2.17) and Eqn. (17) of Box 1.3 of Ref. 7: 
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where the spherically harmonic dipole Y�
m
(θ, φ) = 

sin θ is with respect to the S axis. The dipole spins 
about the S axis at the angular velocity given by (9). 
The resulting current is nonradiative, as shown in 
Section 3.4. Thus the field in the RF rotating frame is 
magnetostatic, as shown in Fig. 1.9 of Ref. 7, but 
directed along the S axis. 

The interaction of the magnetic moments of the 
leptons increases their magnetic energies, given by 
(30), with the mass of the corresponding lepton: 
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where (i) the radii of the electron and muon are given 
by (149)–(150) and (156)–(157)), respectively, (ii) 
µB,µ is the muon Bohr magneton given by (26) with 
the electron mass replaced by the muon mass, (iii) the 
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first term is due to lepton spin, (iv) the second term, 
[(2/3)cos(π/3)]

2
, is due to S, oriented θ = π/3 relative 

to the z axis, wherein the geometrical factor of 2/3 
corresponds to the source current of the dipole field 
(Eqn. (160)) given in the Derivation of the Magnetic 
Field section in Chapter 1 (Eqn. (1.119)) of Ref. 7, 
and the energy is proportional to the magnetic field 
strength squared, according to (29), and (v) the 
relativistic factor from Eqns. (1.228) and (1.140) and 
(2.166) of Ref. 7 is α. 

The energy of the ground state (1
2
S1/2) hyperfine 

structure interval of muonium, ∆E(∆νMu), is given by 
the sum of (158)–(159) and (161)–(162): 
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Using Planck’s equation (87), the interval frequency, 
∆νMu, and wavelength, ∆λMu, are 

  4.46330328 GHz,Muν∆ =  (164) 

  6.71682919 cm.Muλ∆ =  (165) 

The experimental hyperfine structure interval of 
muonium

(68)
 is 
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 (166) 

There is remarkable (seven to eight significant figure) 
agreement between the calculated and experimental 
values of ∆νMu that is only limited by the accuracy of 
the fundamental constants in (156)–(159) and (161)–
(162), as shown by using different CODATA val-
ues.

(46,69,70)
 

3.15 Positronium 

Pair production, the creation of a positron/electron 
pair, occurs such that the radius of one orbitsphere is 
infinitesimally greater than the radius of the antiparti-
cle orbitsphere, as discussed in the Pair Production 
section and the Leptons section of Ref. 7. In addition, 
a minimum energy may be obtained by the binding of 

a positron and an electron as concentric orbitspheres 
at the same radius such that the electric fields mutu-
ally cancel with the conservation of � of angular 
momentum of each lepton. The short-lived hydrogen-
like atom comprising an electron and a positron is 
called positronium. Before annihilation, positronium 
can exist with the electron and positron spins parallel 
or antiparallel, called orthopositronium (

3
S1) and 

parapositronium (
1
S0), respectively. Due to the 

opposite charge of the positron, the magnetic mo-
ments are opposed to the spin orientations. The 
respective decay times are 1 ns and 1 µs. The splitting 
of the spectral lines due to spin orientations is called 
the hyperfine structure of positronium. 

The forces of positronium are central, and the ra-
dius of the outer orbitsphere (electron or positron) is 
calculated as follows after (59), (134), and (145). The 
centrifugal force is given by Eqn. (1.220) of Ref. 7. 
The centripetal electric force of the inner orbitsphere 
on the outer orbitsphere is given by Eqn. (1.221) of 
Ref. 7. A second centripetal force is the relativistic 
corrected magnetic force, Fmag, between each point of 
the particle and the antiparticle given by Eqn. (1.231) 
of Ref. 7, with me substituted for m. The force balance 
equation is given by Eqn. (1.232) of Ref. 7, with me 
substituted for m. The balance between the centrifugal 
and electric and magnetic forces is given in the 
Excited States of the One-Electron Atom (Quantiza-
tion) section and the Excited States of Helium section 
of Ref. 7 and Ref. 6: 
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where r1 = r2 is the radius of the positron and the 
electron and where the reduced mass, µ, is 
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The Bohr radius given by 
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and (169) is substituted into (168) to give the ground-
state radius of positronium: 
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 .1 02r a=  (171) 

3.15.1 Excited-State Energies 

The potential energy V between the particle and the 
antiparticle with radius r1 given by (61) is 
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The calculated ionization energy is V/2 (62)–(64), 
which is 

 6.795 eV.eleE =  (173) 

The experimental ionization energy is 6.795 eV. 
Parapositronium, a singlet-state hydrogen-like atom 

comprising an electron and a positron, can absorb a 
photon that excites the atom to the first triplet state, 
orthopositronium. In parapositronium the electron and 
positron angular momentum vectors are antiparallel, 
whereas the magnetic moment vectors are parallel. 
The opposite relationships exist for orthopositronium. 
The balance between the centrifugal and electric and 
magnetic forces is 
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 02 ,nr n a=  (175) 

where n is an integer and both electrons are at the 
same excited-state radius of rn = n2a0. The principal 
energy levels for the singlet excited states are given 
by Eqns. (2.22) and (9.12) of Ref. 7, with the electron 
reduced mass (169) substituted for the mass of the 
electron: 
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The levels given by (176) match the experimental 
energy levels. 

3.15.2 Hyperfine Structure 

As shown in the Spin Angular Momentum of the 
Orbitsphere-cvf and Orbitsphere (Y0

0
(θ, φ)) � = 0 

section of Ref. 7, the angular momentum of the 
electron or positron orbitsphere in a magnetic field 

comprises the initial �/2 projection on the z axis and 
the initial �/4 vector component in the xy plane that 
precesses about the z axis. As further shown in the 
Magnetic Parameters of the Electron (Bohr Magne-
ton) section of Ref. 7, a resonant excitation of the 
Larmor precession frequency gives rise to an addi-
tional component of angular momentum that is 
consistent with Maxwell’s equations. As shown in the 
Excited States of the One-Electron Atom (Quantiza-
tion) section of Ref. 7, conservation of the � of 
angular momentum of a trapped photon can give rise 
to � of electron angular momentum along the S axis. 
The photon standing waves of excited states are 
spherically harmonic functions that satisfy Laplace’s 
equation in spherical coordinates and provide the 
force balance for the corresponding charge- (mass-) 
density waves. Consider the photon in the case of the 
precessing electron with a Bohr magneton of mag-
netic moment along the S axis. The radius of the 
orbitsphere is unchanged, and the photon gives rise to 
current on the surface that satisfies the condition 

 0J∇ ⋅ =  (177) 

corresponding to a rotating spherically harmonic 
dipole

(7)
 that phase-matches the current- (mass-) 

density of Eqn. (1.123) of Ref. 7. Thus the electro-
static energy is constant, and only the magnetic 
energy need be considered, as given by (179)–(180). 
The corresponding central field at the orbitsphere 
surface given by the superposition of the central field 
of the lepton and that of the photon follows from 
Eqns. (2.10)–(2.17) and (17) of Box 1.3 of Ref. 7 and 
is the spherically harmonic dipole with respect to the 
S axis given by (160). The dipole spins about the S 
axis at the angular velocity given by (9). The resulting 
current is nonradiative, as shown in Section 3.4. Thus 
the field in the RF rotating frame is magnetostatic, as 
shown in Fig. 1.17 of Ref. 7, but directed along the S 
axis. 

Applying a magnetic field with a resonant Larmor 
excitation gives rise to a precessing angular momen-
tum vector S of magnitude � directed from the origin 
of the orbitsphere at an angle of θ = π/3 relative to the 
applied magnetic field. S rotates about the axis of the 
applied field at the Larmor frequency. The magnitude 
of the components of S that are parallel and orthogo-
nal to the applied field (Eqns. (1.84)–(1.85) of Ref. 7) 
are �/2 and 3/ 4 �, respectively. Since both the RF 
field and the orthogonal components shown in Fig. 
1.15 of Ref. 7 rotate at the Larmor frequency, the RF 
field that causes a Stern–Gerlach transition produces a 
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stationary magnetic field with respect to these com-
ponents, as described by Patz.

(67)
 

The component of Eqn. (1.85) of Ref. 7 adds to the 
initial �/2 parallel component to give a total of � in 
the stationary frame corresponding to a Bohr magne-
ton, µB, of magnetic moment. The potential energy of 
a magnetic moment m in the presence of flux B

(45)
 is 

 .E = ⋅m B  (178) 

The angular momentum of the electron gives rise to a 
magnetic moment of µB. Thus the energy spin

magE∆  to 
switch from parallel to antiparallel to the field is 
given by Eqn. (1.147) of Ref. 7: 

 2 2 cos 2 .spin

mag B z B BE B Bµ µ θ µ∆ = ⋅ = =i B  (179) 

spin

magE∆  is also given by Planck’s equation. It can be 
shown from conservation of angular momentum 
considerations (Eqns. (26)–(34) of Box 1.3 of Ref. 7) 
that the Zeeman splitting is given by Planck’s equa-
tion and the Larmor frequency based on the gyro-
magnetic ratio (Eqn. (2) of Box 1.3 of Ref. 7). The 
electron’s magnetic moment may only be parallel or 
antiparallel to the magnetic field rather than at a 
continuum of angles including perpendicular, accord-
ing to (178). No continuum of energies predicted by 
(178) for a pure magnetic dipole is possible. The 
energy difference for the magnetic moment to flip 
from parallel to antiparallel to the applied field is 

 2 ,spin

mag LE ω∆ = �  (180) 

corresponding to magnetic dipole radiation, wherein 
ωL is the Larmor angular frequency. 

Equation (178) implies a continuum of energies, 
whereas Eqn. (29) of Box 1.3 of Ref. 7 shows that the 
static-kinetic and dynamic vector potential compo-
nents of the angular momentum are quantized at �/2. 
Consequently, as shown in Section 3.7 and the 
Electron g Factor section of Ref. 7, the flux linked 
during a spin transition is quantized as the magnetic 
flux quantum, Φ0 = h/(2e). Only the states corre-
sponding to ms = ±1/2 are possible due to conserva-
tion of angular momentum. It is further shown using 
the Poynting power vector, with the requirement that 
flux be linked in units of the magnetic flux quantum, 
that the factor 2  of (179) and (180) is replaced by the 
electron g factor. The energy, spin

magE∆ , to flip the 
electron’s magnetic moment from parallel to antipar-
allel to the applied field is given by (36)–(37). 

Positronium undergoes a Stern–Gerlach transition. 
The energy of the transition from orthopositronium 
(
3
S1) to parapositronium (

1
S0) is the hyperfine struc-

ture interval. The angular momentum of the photon 
given by m = ∫(8πc)

–1
Re[r × (E × B*)]dx

4
 = � in the 

Equations of the Photon section of Ref. 7 is con-
served

(57)
 for the solutions for the resonant photons 

and hyperfine-state lepton functions, as shown for the 
cases of one-electron atoms and helium in the Excited 
States of the One-Electron Atom (Quantization) and 
Excited States of Helium sections of Ref. 7, respec-
tively, and Ref. 6. To conserve the � of angular 
momentum of each lepton and the photon, orthoposi-
tronium possesses orbital angular momentum states 
corresponding to m� = 0, ±1, whereas parapositronium 
possesses orbital angular momentum states corre-
sponding to the quantum number m� = 0. The orbital 
angular momentum states of orthopositronium are 
degenerate in the absence of an applied magnetic 
field. As in the case of the electron Stern–Gerlach 
transition, both leptons remain at the same radius of r 
= 2a0 given by (171). 

The hyperfine structure interval of positronium can 
be calculated from the spin-spin and spin-orbital 
coupling energies of the 

3
S1 → 

1
S0 transition. The 

vector projection of the orbitsphere angular momen-
tum on the z axis is Lz = �/2 (Eqn. (1.77) of Ref. 7), 
with an orthogonal component of Lxy = �/4 (Eqn. 
(1.76) of Ref. 7). The magnetic flux, B, of the elec-
tron (positron) at the positron (electron) due to Lz, 
after McQuarrie,

(45)
 is given by (127). The spin-spin 

coupling energy ∆Espin-spin between the inner or-
bitsphere and the outer orbitsphere is given by (37), 
where µB, the magnetic moment of the outer or-
bitsphere, is given by (26). Substitution of (26) and 
(127) into (37) gives 

 

2 2 2 2

0 0

2 3 2 3

1 0

5 2
2

1

2 4 8 (2 )

1 (2 )
              ,

8 8

spin-spin

e e

e

g e g e
E

m r m a

g
m c

µ µ

α π

πα

∆ = =

=

� �

 (181) 

where the factor of 1/2 arises from (178) with the 
presence of the magnetic flux only for the 

1
S0 state, 

the radius is given by (171), and (115)–(118) were 
used to convert (181) to the electron mass-energy 
form of (118). 

In the case of atomic hydrogen with n = 2, the ra-
dius given by Eqn. (2.2) of Ref. 7 is r = 2a0, and the 
predicted energy difference between the 

2
P3/2 and 

2
P1/2 
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levels of the hydrogen atom, Es/o, is given by (118). In 
the case of the hyperfine transition of positronium, the 
spin-orbital coupling energy ∆Es/o (

3
S1 → 

1
S0) with r 

= 2a0 is given by (118), with the requirement that the 
flux from the partner lepton be linked in units of the 
magnetic flux quantum corresponding to the anoma-
lous g factor (36)–(37), the source current given by 
(160) give rise to a factor of 3/2, and each lepton 
contribute to the energy: 

 
5 2

3 1 2

/ 1 0

3 (2 ) 3
( S S ) 2 .

2 8 4
s o e

g
E m c

α π
∆ → =  (182) 

The hyperfine structure interval of positronium (
3
S1 

→ 
1
S0) is given by the sum of (181) and (182): 

 

3 1

- / 1 0

2 2 5 2
20

2 3

0

5 2
2

4

( S S )

3 (2 ) 3

8 (2 ) 8 4

(2 ) 1 3 3

8 8 2

8.41155110 10  eV.

Ps hyperfine spin spin s o

e

e

e

E E E

g e g
m c

m a

g
m c

µ α π

α π

πα

−

∆ = ∆ + ∆ →

= +

 
= +  

 

= ×

�

(183) 

Using Planck’s equation (87), the interval in fre-
quency, ∆υ, is 

  203.39041 GHz.υ∆ =  (184) 

The experimental ground-state hyperfine structure 
interval

(71)
 is 

 

4

 (exper.) 8.41143 10  eV,

(exper.) 203.38910(74) GHz (3.6 ppm).

Ps hyperfineE

υ

−∆ = ×

∆ =
 (185) 

There is remarkable (six significant figure) agreement 
between the calculated and experimental values of ∆υ 
that is only limited by the accuracy of the fundamen-
tal constants.

(70)
 A computer simulation of posi-

tronium and the positron-electron-annihilation event 
is shown in the Positronium section of Ref. 7. 

4. CONCLUSION 

It is true that the Schrödinger equation can be sol-
ved exactly for the hydrogen atom, although it is not 
true that the result is the exact solution of the hydro-
gen atom. Electron spin is missed entirely, and there 
are many internal inconsistencies and nonphysical 

consequences that do not agree with experimental 
results.

(1–10)
 Despite its successes, QM has remained 

mysterious to all who have encountered it. Starting 
with Bohr and progressing into the present, the 
departure from intuitive, physical reality has widened. 
The connection between QM and reality is more than 
just a “philosophical” issue. It reveals that QM is not 
a correct or complete theory of the physical world and 
that inescapable internal inconsistencies and incon-
gruities arise when attempts are made to treat it as a 
physical as opposed to a purely mathematical “tool.” 
But QM has severe limitations, even as a tool, consid-
ering that beyond one-electron atoms, multi-electron 
atom quantum-mechanical equations cannot be solved 
except by approximation methods

(12)
 involving 

adjustable-parameter theories that often involve new 
physics or constructs or are simply curve-fitting 
algorithms.

(6)
 

Even the Schrödinger equation results for one-
electron atoms (the only problem that can be solved 
without approximations) are not accurate at all. It is 
nonrelativistic and there are major differences be-
tween predicted and experimental ionization energies 
as Z increases. Furthermore, in addition to spin, it 
misses the Lamb shift, anomalous magnetic moment 
of the electron, the fine structure, the hyperfine 
structure, and spectra of positronium and muonium; it 
is not stable to radiation; and it has many other 
problems with predictions that do not match experi-
mentation.

(2–10)
 It also has an infinite number of 

solutions, not just the ones given in textbooks, as 
given in Margenau and Murphy

(11)
 and Ref. 9. 

The Dirac equation is touted as remedying the non-
relativistic nature of the Schrödinger equation and 
providing an argument for the existence of virtual 
particles and corresponding so-called QED computer 
algorithms for calculating unexpected observables 
such as the Lamb shift and the anomalous magnetic 
moment of the electron. But both the Schrödinger and 
Dirac equations have many problems, which make 
them untenable as representing reality — infinities, 
lack of Einstein causality (spooky action at a dis-
tance), self-interaction, instability to radiation, 
negative kinetic energy states, Klein paradox, and 
more.

(1–10)
 This was argued by the founders of 

QM.
(22,30,31)

 Furthermore, QED is completely postu-
lated. It involves a point electron that cannot occupy 
any volume; consequently, all calculations have 
“intrinsic infinities” and require renormalization, 
which is completely arbitrary. It further relies on a 
string of nonphysical constructs. For example, it is 
based on postulated polarization of the vacuum by 
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postulated virtual particles that have no basis in 
reality, are fantastical at best, and are conclusively 
shown to be impossible based on special relativity 
and astrophysical observations.

(21)
 

Rather than invoking renormalization, untestable 
virtual particles, and polarization of the vacuum by 
the virtual particles, the results of QED, such as the 
anomalous magnetic moment of the electron, the 
Lamb shift, the fine structure and hyperfine structure 
of the hydrogen atom, and the hyperfine structure 
intervals of positronium and muonium (thought to be 
only solvable using QED), are solved exactly from 
Maxwell’s equations. 

(g – 2)/2 is solved in closed form based on conser-
vation of the electron’s angular momentum and the 
subsequent requirement that flux be linked by the 
extended electron in quantized units of the magnetic 
flux quantum Φ0 = h/(2e). The Lamb shift is calcu-
lated from the conservation of momentum of the 
emitted photon and the recoiling electron and hydro-
gen atom. The fine-structure energy is the Lamb-
shifted relativistic interaction energy between the spin 
and orbital magnetic moments due to the correspond-
ing angular momenta. The hyperfine structure of the 
hydrogen atom and muonium is calculated from the 
force balance contribution between the electron and 
the proton and muon, respectively. The transition 

energies correspond to the Stern–Gerlach and stored 
electric and magnetic energy changes. With posi-
tronium, the leptons are at the same radius, and the 
positronium hyperfine interval is given by the sum of 
the Stern–Gerlach and fine-structure energies. In each 
case, the agreement is to the limit possible based on 
experimental measurements and the error of the 
measured fundamental constants in the closed-form 
equations containing only these constants. These 
results from the known physical laws based on direct 
observation invalidate virtual particles and confirm 
QED’s illegitimacy as representative of reality. 

The laws of electromagnetism and electrodynamics 
summarized in Maxwell’s equations predate QM by 
over 100 years. These laws and the implicit special 
relativity are the most experimentally proven physical 
laws ever. Even before the present work, they were 
known to hold over at least 24 orders of magnitude of 
length scale.

(72)
 It is evident that only theories consis-

tent with Maxwell’s equations and special relativity 
need be considered. In discovering the means to 
extend these laws to problems thought only solvable 
using the mechanics of QED, it is shown that Max-
well’s equations are fact and the virtual particle–
based QED is fiction. 
 
Received 18 May 2005. 

Résumé 

La déclaration que l’électrodynamique quantique (EDQ) est la théorie la plus ré-
ussie de l’histoire subit un examen critique. L’équation de Dirac a été postulée en 
1926 en tant que moyen de résoudre la nature non relativiste de l’équation de 
Schrödinger afin d’offrir le quatrième chiffre quantique manquant. Les termes de 
racine carrée positive ainsi que négative fournissent un argument pour l’existence 
des états négatifs d’énergie du vide, de particules virtuelles et des soi-disant algo-
rithmes correspondant EDQ par ordinateur afin de calculer les visibles inatten-
dus tel que le déplacement de Lamb et le moment magnétique anormale de 
l’électron. En plus, la tentative de Dirac de résoudre l’électron lie physiquement 
avec la stabilité en respect de la radiation selon les équations de Maxwell avec 
les contraintes supplémentaires que c’était un invariant relativiste duquel sur-
vient le spin électronique peut être réalise utilisant une approche classique. 
Commençant avec les mêmes essentiels physiques que Bohr, Schrödinger, et Di-
rac du eG en mouvement dans le champ Coulombien du proton et l’équation 
d’onde, les avances de la compréhension de la stabilité de l’électron lié à la ra-
diation est appliquée afin de résoudre pour la nature précise de un électron. Plu-
tôt qu’utiliser la condition au limites postulée de Schrödinger, « Ψ → 0 as r → 
64 », menant à un modèle purement mathématique de l’électron, la contrainte est 
basée sur l’observation expérimentale. Utilisant les équations de Maxwell, 
l’équation classique d’onde est résolue avec la contrainte que l’électron en état 
lié, n – 1, ne peut pas émettre d’énergie. En dépit du fait qu’il soit bien connu 
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qu’une particule ponctuelle accélérée radie, une distribution étendue modelée en 
tant qu’une superposition de charges en accélération peut ne pas radier. Un mo-
dèle invariant physique simple surgit naturellement dans lequel les résultats pré-
vus sont extrêmement directes et intérieurement cohérents exigeant une mathéma-
tique minimale comme dans le cas des équations les mieux connues de Newton, 
Maxwell, Einstein, de Broglie, et Planck sur lesquelles les modèles sont basés. 
Aucune nouvelle physique est nécessaire, seulement les lois physiques connues 
basées sur l’observation directe sont utilisées. Plutôt que d’invoquer des théories 
imaginaires qui ne peuvent pas être soumises à l’essai, les résultats de EDQ tels 
que le déplacement de Lamb et le moment magnétique anormale de électron, la 
structure fine de l’atome d’hydrogène et les intervalles de la structure hyperfine 
du positonium et du muonium peuvent être résolus exactement des équations de 
Maxwell a la limite possible base sur les mesures expérimentales ce qui confirme 
l’illégitimité du EDQ en tant qu’expression de la réalité. 

 
Endnotes 
1
 The Rutherford experiment demonstrated that even 

atoms comprise essentially empty space.
(20)

 Zero-
point field fluctuations, virtual particles, and states 
of negative energy and mass invoked to describe 
the vacuum are nonsensical and have no basis in 
reality since they have never been observed ex-
perimentally and would correspond to an essen-
tially infinite cosmological constant throughout the 
entire universe, including regions of no mass. As 
given by Waldrop,

(21)
 “What makes this problem 

into something more than metaphysics is that the 
cosmological constant is observationally zero to a 
very high degree of accuracy. And yet, ordinary 
quantum field theory predicts that it ought to be 
enormous, about 120 orders of magnitude larger 
than the best observational limit. Moreover, this 
prediction is almost inescapable because it is a 
straightforward application of the uncertainty prin-
ciple, which in this case states that every quantum 
field contains a certain, irreducible amount of en-
ergy even in empty space. Electrons, photons, 
quarks — the quantum field of every particle con-
tributes. And that energy is exactly equivalent to 
the kind of pressure described by the cosmological 
constant. The cosmological constant has accord-
ingly been an embarrassment and a frustration to 
every physicist who has ever grappled with it.” 

2
 Oskar Klein pointed out a glaring paradox implied 

by the Dirac equation, which was never resolved:
(23)

 
“Electrons may penetrate an electrostatic barrier 
even when their kinetic energy, E – mc

2
, is lower 

than the barrier. Since in Klein’s example the bar-
rier was infinitely broad this could not be associated 
with wave mechanical tunnel effect. It is truly a 
paradox: Electrons too slow to surpass the potential, 

may still only be partially reflected.… Even for an 
infinitely high barrier, i.e., r2 = 1 and energies ≈ 1 
MeV, (the reflection coefficient) R is less than 
75%! From (2) and (3) it appears that as soon as the 
barrier is sufficiently high: V > 2mc

2
, electrons may 

transgress the repulsive wall — seemingly defying 
conservation of energy.… Nor is it possible by way 
of the positive energy spectrum of the free electron 
to achieve complete Einstein causality.” 

3
 Equation (69) is erroneously interpreted as a 

physical law of the indeterminate nature of conju-
gate parameters of atomic particles such as position 
and momentum or energy and time. This so-called 
Heisenberg uncertainty principle is not a physical 
law, rather it is a misinterpretation of applying the 
Schwartz inequality to a probability-wave model of 
a particle.

(54)
 The mathematical consequence is that 

a particle such as an electron can have a continuum 
of momenta and positions with a continuum of 
energies simultaneously, which cannot be physical. 
This result is independent of error or limitations 
introduced by measurement. Jean B. Fourier was 
the first to discover the relationship between time 
and frequency compositions of physical measur-
ables. Equation (69) expresses the limitation of 
measuring these quantities since an impulse con-
tains an infinity of frequencies, and no instrument 
has such bandwidth. Similarly, an exact frequency 
requires an infinite measurement time, and all 
measurements must be finite in length. Thus (69) is 
a statement about the limitations of measurement in 
time and frequency. It is further a conservation 
statement of energy of a signal in the time and 
frequency domains. Werner Heisenberg’s substitu-
tion of momentum and position for a single-particle 
probability wave into this relationship says nothing 
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about conjugate parameters of a particle in the 
absence of their measurement or the validity of the 
probability-wave model. In fact, this approach has 
been shown to be flawed experimentally in the 
Wave-Particle Duality section and Appendix II: 
Quantum Electrodynamics (QED) is Purely 
Mathematical and Has No Basis in Reality of 
Ref. 7, and discussed previously.

(2,9,10)
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